Authors would like to express our most sincere gratitude to the reviewer for your effort and patience in reviewing our manuscript. We deeply appreciate your constructive comments that greatly help improve the technical quality and the presentation of this manuscript. Please also accept our apologies for not being able to present clearly the real contributions of the work.

According to the reviewer’s comments, we have revised the manuscript as follow.

(1) In this paper, a novel localization approach for multi-robot systems is proposed. The benefits of the method have been illustrated clearly. Are there other ways that the assumption of the condition can be further reduced?

In this paper, considering that the robot systems are relatively close to each other and the communication processing device is relatively simple, we only deal with the problem of co-location of fixed communication delays. In the case that the communication delay is variable, it is still necessary to improve the filtering algorithm, and we will focus on this issue in the follow-up work.

The proposed method in this paper must preserve the state of the system during the entire period of the delay. If the delay is long or more-HOP communications topology was considered, it may impose high requirements on the system storage hardware. In addition, if there is data loss, it will affect the algorithm. How to reduce the amount of storage and deal with the loss of packets without loss of precision is the next topic to be studied.

(2) Information fusion provides a powerful tool to deal with uncertainty and external disturbance. For example, Human-Manipulator Interface based on Multisensory Process via Kalman Filters, A Markerless Human-Robot Interface Using Particle Filter and Kalman Filter for Dual Robots, Markerless Human-Manipulator Interface Using Leap Motion with Interval Kalman Filter and Improved Particle Filter. Brief discussions are helpful. The reviewer doubts if the authors can combine the sliding mode estimation technique to improve the robustness of the developed method.

The reviewer provides a good idea. This paper proposes a method to solve the problem of cooperative positioning under fixed time delay. Due to the limitations of the proposed method, the location problem of more complex systems still needs to be further studied, including the robustness
problem, communication structure problem and so on. The sliding mode estimation technique is a good choice. We will work on this problem in the future open up research.

(3) In conclusion part, more future works and challenges are recommended.

As the reviewer’s good advice, we have analyzed the limitations of the proposed method in this paper and the follow-up research work In conclusion part.

Special thanks to you for your good comments. We look forward to hearing from you regarding our submission. We would be glad to respond to any further questions and comments that you may have.