Dear Professor,

Thanks very much for your comments.
The manuscript is revised as the comments, and reply as follow:

1. This description is not enough to justify the use. How much is the use of CFST columns? Why the investigation of rectangular-sectional columns is so innovative? Are they so different from square-sectional ones?

 Response: Ok, the number of the related application is added in line 38-39. The description of the innovative investigation is added and revised in line 49-55 of the revised manuscript.

2. 10 specimens, 6 mix designs. Not clear the types of samples.

 Response: The types of specimens including the mix designs are described in Line 131-135 in the revised manuscript. Please check it.

3. so, the load wasn't continuous? Which "load intervals" were maintained for not less than 2 minutes??

 Response: Yes, the load was step-by-step applied. A load step about 7.5% of the estimated ultimate load was adopted, and each step was maintained for not less than 2 min to get the stable data. It is added in line 165-166 of the revised manuscript.

4. Not scientific. Please comment the type of failures during the test, not the sound

 Response: Ok, it is revised in line 179-181 of the revised manuscript.

5. Please quantify the values

 Response: Ok, the calculation of slopes is added in line 211-212, and the quantify comparison is added in 216-223 of the revised manuscript.

6. Why are they compared to C70? Not comparable. Please modify.

 Response: Ok, it is modified in Figure 7. The related comparison is deleted.

7. there could be peculiar behaviours related to the peculiar samples (e.g. for imperfections?)

 Response: The axial compressive strength of in-filled concrete of B-0-CF80/1.2 and C-0-CF80/1.2 are 47.4MPa and 52.6MPa, respectively, and the energy dissipation capacity increases with the concrete strength. The energy dissipation capacity of B-0-CF80/1.2 has a little decrease of 2.8% because of the lower concrete strength.