The authors have taken into account some of the comments, while some of the article still needs major revisions:

1. Too many references to one sentence (or example: line 65 [18-22], line 70 [3,14,17-19,24]). Please discuss the results of the research presented in the cited papers.

2. standards should be added in the table in an additional column

3. Tab 4 - explain why no viscosity tests were performed at certain temperatures?

4. Can you determine the level of change after the addition of additives without the results of 60/80 asphalt test results? Have you previously published the results of tests on the viscosity of 60/80 asphalt from the same production batch without additions? Asphalt from another production batch may have other properties: penetration, softening point or viscosity

5. Your answer: The higher viscosity of RSAC was obtained because of the effect of crumb rubber and mineral filler particles in the asphalt matrix compared to SAM. Similar results were found in the previous researches.

Note that these viscosities vary considerably. 273 is over 400 more than 0.61. Were all of the test conditions the same? Perhaps the spindle or spindle speed has been changed?

6. Add information about the number of samples tested in the text.

7. The asphalt viscosity always decreases with increasing temperature. Woszuk et al. wrote a lot about the studied viscosity of asphalt. Explaining your results, refer to the published by others. The literature [13] you quote does not apply to viscosity tests.

Recommended literature:

Influence of waste engine oil addition on the properties of zeolite-foamed asphalt, Materials, 12(14), 2265, https://doi.org/10.3390/ma12142265


8. In the analysis, please focus on the temperatures to which the bitumen is heated during the production of mix asphalt. TG-DTG curves are for a temperature range from 0°C to 900°C, so you can do this analysis. An analysis of the above-mentioned literature will be helpful.

9. It is better to write the conclusions point wise.