Unequal Effects of Parental Educational Attainment on Body Mass Index of Black and White Youth

Shervin Assari 1*, Shanika Boyce 1, Mohsen Bazargan 1,3, Ron Mincy PhD 4,5,6 and Cleopatra Caldwell 7,8

1 Department of Family Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA
2 Department of Pediatrics
3 Department of Family Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
4 Center for Research on Fathers, Children, and Family Well-Being, New York, NY 10027-5927, USA
5 Columbia Population Research Center (CPRC), New York, NY 10027-5927, USA
6 Columbia School of Social Work, New York, NY 10027-5927, USA
7 Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
8 Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
9* Correspondence: assari@umich.edu

Abstract: Background: Parental educational attainment is shown to be protective against health problems, Minorities’ Diminished Returns theory, however, posits that these protective effects tend to be smaller for socially marginalized groups particularly Blacks than Whites. Aims: To explore racial differences in the effect of parental educational attainment on body mass index (BMI) in a national sample of American adolescents. Methods: In this cross-sectional study, we used baseline data of 10,701 (8,678 White and 2,023 Black) 12-17 years old adolescents in the Population Assessment of Tobacco and Health (PATH; 2013). Parental educational attainment was the predictor. Youth BMI was the dependent variable. Age, gender, ethnicity, and family structure were covariates. Race was the focal moderator. Results: Overall, higher parental educational attainment was associated with lower youth BMI. Race, however, moderated the effect of parental educational attainment on BMI, suggesting that the protective effect of parenting educational attainment on BMI is significantly smaller for Black than White youth. Conclusions: In the United States, race alters the health gains that are expected to follow parental educational attainment. While white youth who are from highly educated families are fit, black youth have high BMI at all levels of parental educational attainment. That means, while the most socially privileged group, whites, gain most health from their parental education, blacks, the least privileged group, gain the least. The result is disproportionately high BMI in middle-class Blacks. Economic, social, public, and health policy makers should be aware that health disparities are not all due to lower socioeconomic status (SES) of the disadvantaged group but also diminished returns of SES resources for them. Black-White health disparities exist across all SES levels.

Keywords: population groups; race; Whites; Blacks; African-Americans; socioeconomic position; socioeconomic status; education; obesity, body mass index (BMI)

1. Background

Body Mass Index (BMI) is now universally considered a marker of health [1,2]. High BMI is a predictor of premature mortality in general population [3-5] and individuals with a chronic medical condition (CMC) [6].

Compared to white youth, Black youth have higher body mass index (BMI) in the US [7-9]. Epidemiological studies have shown that education [9] and race [10,11] are independent predictors
of BMI [9]. BMI is also shown to mediate some of the inequalities and disparities in health [12-23].

Finally, racial, ethnic, and economic many have some separate, additive, or multiplicative effects[9].

Educational attainment is one of the main predictors of BMI[9].

Similarly, Black youth have higher risk of overweight and obesity compared to their white counterparts [24-26]. Disparities in BMI are among the main contributors to racial health disparities in other health domains including but not limited to chronic disease and mortality [27,28]. Inequality in BMI in youth is also a gateway to the very persistent disparities in the burden of obesity seen in adults [7]. Thus, there is a need to understand the socioeconomic factors that explain racial differences in BMI[29], particularly those between Black and White youth [30].

Given the protective effect of high socioeconomic status (SES) against high BMI in youth [31-33], adults [34,35], and older adults [36,37], SES is one of the best candidate as an explanatory factor for explaining the BMI differences between Blacks and Whites[30]. This is particularly relevant given the literature that has linked low SES to higher BMI among Black youth [32,38-40]. Among various SES indicators, parental educational attainment seems to be one of the main protective factors against high BMI and obesity [41-43].

Minorities’ Diminished Returns (MDRs) [44,45] proposes that at least some of the racial/ethnic disparities in BMI are due to “less than expected” protective effects of SES on BMI for the Black community[32,39,46]. This suggests: (a) racial disparities in obesity and high BMI are not all due to SES gaps across racial groups but also because of the differential health gains that follow SES resources such as parental education for Black populations, and (b) the relative racial gap in obesity and BMI widens as SES increases [32,39,46], which emphasizes a need to study and address racial disparities in obesity across all SES levels, not just among low SES groups [44,45].

In a cross-sectional study that used data from the National Survey of Children’s Health (NSCH, 2003-2004), 67,610 White and 9095 Black children 2–17 years old were compared for the effect of parental income on childhood obesity. This study showed that family income reduces odds of obesity for White but not Black children [32]. In a 1 year follow up study of urban families, race by gender groups were compared to the effects of parental educational attainment at birth on future BMI at age 15. In this study, the most consistent protective effects of parental education were found for the effects of family SES against high future BMI for White girls, followed by White boys. No association was found for maternal education, family structure, and family income at birth and future youth BMI at age 15 for Black boys or girls. However, this study did not use a nationally representative sample, thus the results could not be generalized to the US population [46]. Thus, despite the existing evidence that suggests MDRs may apply to racial differences in BMI of youth, there is still a need to test this hypothesis in nationally representative data sets that generate representative results.

We conducted this study to test whether race shows an interaction with parental educational attainment on youth BMI in the US. In line with the MDRs literature [32,39,46], we hypothesized that the protective effect of parental educational attainment would be significantly smaller for Black than White youth. Conceptualizing race as a social rather than a biological factor, we argue that MDRs are not because of groups’ or individuals’ inherent differences in their ability to translate their resources but the differential treatment of the society that is associated with marginalization and stigmatization of Blacks [44,45]. As a result of unequal life circumstances, we expect to observe MDRs for the effects of parental educational attainment on BMI in Blacks than whites.

2. Methods

2.1. Design and Settings

This is a secondary analysis of wave 1 of the Population Assessment of Tobacco and Health (PATH) youth data. Funded by the NIH and FDA, PATH is a state-of-the-art study on health problems such as tobacco use, substance use, and related behavioral issues among American adolescents and adults. Overall, PATH has enrolled about 49,000 people who were 12 years or older at baseline. From this sample, about 14,000 were youth (12-17 years old). Wave 1 data were collected between 2013 and 2014. Although PATH also has recruited adults, this analysis is only focused on
youth. We used the publicly available PATH data set. As we were interested in the association between SES and BMI rather than change in BMI, we decided to limit our analysis to cross-sectional data (wave 1) of the PATH study.

2.2. Sample and Sampling

The PATH study’s population of interest in Wave 1 was the civilian, non-institutionalized US population 12 years of age and older individuals in the US. The PATH study used a four-stage stratified area probability sample design. Stage one was selection of a stratified sample of geographical primary sampling units (156 PSUs). These PSUs were either a county or a group of counties. The stage two formed and sampled smaller geographical segments in each PSU. Stage three sampled residential addresses, using the US Postal Service Computerized Delivery Sequence Files. The fourth stage was selection of one person from each sampled household.

2.3. Analytical Sample

The current analysis is limited to youth who complete data on age, gender, parental education, race, ethnicity, and BMI. Our final analytical sample was 10,701 (8,678 White and 2,023 Black) adolescents.

2.4. Study Variables

The study variables include age, gender, race, ethnicity, parental educational attainment, marital status of the parents (family structure), and BMI.

Demographic Factors. Age was a dichotomous variable as below: (1) 12 to 15 years old, and (2) 16 to 18 years old.

Race and Ethnicity. Race was self-identified and operationalized as a dichotomous variable: Black versus Whites. Ethnicity was also self-identified and operationalized as a dichotomous variable: Non-Hispanic versus Hispanic.

Socioeconomic Status. Parental educational attainment was a five-level variable as below: (1) Less than High School, (2) High school graduate or equivalent, (3) Some college including no degree or Associates degree, (4) Bachelor’s degree, and (5) Advanced degree. This was a continuous measure ranging between 1 and 5.

Body Mass Index (BMI): Body mass index was measured using participants’ height and weight. First, height and weight were recorded in feet/inches and pounds, respectively. In the second step, height and weight were calculated in meters and kilograms. BMI was calculated by dividing weight (kilograms) by height squared (meters squared).

2.5. Conceptual model

Built on the MDRs, our study is mainly focused on the interaction between race and SES. As a result, the main predictor of interest is parental educational attainment. The outcome of interest is BMI. We expect that the high parental educational attainment reduces BMI, however, we expect this effect to be smaller in Black compared to White youth.

2.6. Data analytical plan

We analyzed the data using SPSS 23.0 (IBM Corporation, Armonk, NY, USA). We applied survey design weights. SPSS uses Taylor series linearization to re-estimate standard errors (SE) of the survey data. First, we examined the distribution of our categorical and continuous variables to rule out multicollinearity between independent variables. For multivariable analysis, we applied linear regression models. We ran models in the pooled sample, as well as across racial groups. From our models, we reported B, SE, OR, 95% CI, and p value. As a robustness check, they should run their analysis using...
non-Hispanic blacks and non-Hispanic whites. We did not impute data. Complete data cases were entered to our analysis.

3. Results

3.1. Descriptive Statistics

This study included 10,701 American adolescents who were either White ($n = 8,678$, 81.1%) or Black ($n = 2023$, 19.9%). Table 1 shows descriptive statistics of the complete sample as well as by race. White youth were more likely to be of Hispanic ethnicity, have parents with higher educational attainment, and married parents. We did not find significantly differences in age and gender between White and Black youth. On average, Black youth had higher BMI than White youth (Table 1).

<table>
<thead>
<tr>
<th>Table 1. Descriptive statistics in the complete sample and by race.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ethnicity*</td>
</tr>
<tr>
<td>Non-Hispanic</td>
</tr>
<tr>
<td>Hispanic</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>12-15</td>
</tr>
<tr>
<td>16-17</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Women</td>
</tr>
<tr>
<td>Men</td>
</tr>
<tr>
<td>Marital Status*</td>
</tr>
<tr>
<td>Not Married</td>
</tr>
<tr>
<td>Married</td>
</tr>
<tr>
<td>Parental Educational Attainment (1-5)*b</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>SD</td>
</tr>
</tbody>
</table>

*p < 0.01, * Chi square test for comparison of Black and White youth. b Independent samples t test for comparison of means between Black and White youth.

3.2. Multivariable models in the pooled sample

Table 3 presents the summary of the results of two linear regression models with parental educational attainment as the independent variable and BMI as the dependent variable. Both models were estimated in the complete sample. Model 1 was the non-interactive model that entered the main effects of educational attainment and race in addition to the covariates. Model 2 also added an interaction term between race and educational attainment. Covariates were the same in these two models.

Based on Model 1, high educational attainment was associated with lower BMI. In this model, being Black was also associated with higher BMI. Model 2 revealed an interaction between race and parental educational attainment on BMI, suggesting that high parental educational attainment has
smaller protective effects on BMI for Black than White youth. This was evident by a b which was negative for the main effect of parental educational attainment (Model 1) and a b which was positive for the interaction term between race and parental educational attainment (Model 2) (Table 3).

As a robustness check, we could replicate the results using non-Hispanic blacks and non-Hispanic whites.

Table 3. Summary of linear regressions on BMI in the pooled sample.

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>SE</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1 (All, Non-interactive Model)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race (Blacks)</td>
<td>.84</td>
<td>.13</td>
<td>.58</td>
<td>1.10</td>
</tr>
<tr>
<td>Parental Educational Attainment (1-5)</td>
<td>-.45</td>
<td>.04</td>
<td>-.54</td>
<td>-.37</td>
</tr>
<tr>
<td>Ethnicity (Hispanics)</td>
<td>.64</td>
<td>.13</td>
<td>.39</td>
<td>.89</td>
</tr>
<tr>
<td>Parents Married</td>
<td>-.36</td>
<td>.11</td>
<td>-.57</td>
<td>-.15</td>
</tr>
<tr>
<td>Gender (Boys)</td>
<td>.00</td>
<td>.10</td>
<td>-.19</td>
<td>.20</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>1.79</td>
<td>.10</td>
<td>1.60</td>
<td>1.99</td>
</tr>
<tr>
<td>Constant</td>
<td>22.88</td>
<td>.17</td>
<td>22.54</td>
<td>23.23</td>
</tr>
<tr>
<td>Model 1 (All, Interactive Model)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race (Blacks)</td>
<td>-.65</td>
<td>.33</td>
<td>-1.29</td>
<td>-.01</td>
</tr>
<tr>
<td>Parental Educational Attainment (1-5)</td>
<td>-.55</td>
<td>.05</td>
<td>-.65</td>
<td>-.46</td>
</tr>
<tr>
<td>Black × Parental Educational Attainment</td>
<td>.55</td>
<td>.11</td>
<td>.34</td>
<td>.77</td>
</tr>
<tr>
<td>Ethnicity (Hispanics)</td>
<td>.57</td>
<td>.13</td>
<td>.32</td>
<td>.82</td>
</tr>
<tr>
<td>Parents Married</td>
<td>-.36</td>
<td>.11</td>
<td>-.57</td>
<td>-.14</td>
</tr>
<tr>
<td>Gender (Boys)</td>
<td>.00</td>
<td>.10</td>
<td>-.19</td>
<td>.20</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>1.78</td>
<td>.10</td>
<td>1.59</td>
<td>1.98</td>
</tr>
<tr>
<td>Constant</td>
<td>23.20</td>
<td>.18</td>
<td>22.83</td>
<td>23.56</td>
</tr>
</tbody>
</table>

B: Regression Coefficient CI: Confidence Interval; SE: Standard Error.

3.3. Multivariable models by race

Table 3 presents the results of two linear regression models with educational attainment as the independent variable and BMI as the dependent variable. These models were setup similarly, and each one was run in one racial group. Model 3 and Model 4 were estimated in Whites and Blacks, respectively.

Based on Model 3, high educational attainment was associated with lower BMI in Whites. Model 4, however, did not show the same pattern of association for Blacks. That is, high educational attainment showed a statistically significant protective effect on BMI for Whites but not Blacks (Table 3).

Figure 1 shows the bivariate correlation between parental educational attainment (X) and body mass index (Y) in White and Black youth. As this figure shows, there was an inverse correlation between parental educational attainment and BMI in White but not Black youth.

Table 3. Summary of linear regression models on BMI by race.

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>SE</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 3 (Whites)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parental Educational Attainment (1-5)</td>
<td>-.54</td>
<td>.05</td>
<td>-.64</td>
<td>-.45</td>
</tr>
<tr>
<td>Ethnicity (Hispanics)</td>
<td>.62</td>
<td>.13</td>
<td>.37</td>
<td>.88</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>CI</td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Parents Married</td>
<td>-.41</td>
<td>-.64</td>
<td>-.18</td>
<td>.001</td>
</tr>
<tr>
<td>Gender (Boys)</td>
<td>.16</td>
<td>-.05</td>
<td>.37</td>
<td>.139</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>1.82</td>
<td>1.61</td>
<td>2.03</td>
<td>.000</td>
</tr>
<tr>
<td>Constant</td>
<td>23.09</td>
<td>22.73</td>
<td>23.46</td>
<td>.000</td>
</tr>
</tbody>
</table>

Model 4 (Blacks)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>CI</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental Educational Attainment (1-5)</td>
<td>-.02</td>
<td>-.24</td>
<td>.21</td>
</tr>
<tr>
<td>Ethnicity (Hispanics)</td>
<td>.11</td>
<td>-.76</td>
<td>.99</td>
</tr>
<tr>
<td>Parents Married</td>
<td>-.17</td>
<td>-.71</td>
<td>.36</td>
</tr>
<tr>
<td>Gender (Boys)</td>
<td>-.67</td>
<td>-1.18</td>
<td>-.15</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>1.64</td>
<td>1.12</td>
<td>2.16</td>
</tr>
<tr>
<td>Constant</td>
<td>22.98</td>
<td>22.22</td>
<td>23.74</td>
</tr>
</tbody>
</table>

B: Regression Coefficient
CI: Confidence Interval; SE: Standard Error.

A) White youth

![Image of White youth chart]
Figure 1. Association between parental educational attainment (X) and body mass index (Y) in White and Black youth. Independent variable (X) is parental educational attainment, ranging from 1 to 5. Outcome (Y) is youth BMI.

4. Discussion

The current study showed two findings. First, overall, higher parental educational attainment was associated with lower BMI in American youth. Second, race showed a significant interaction with parental educational attainment suggesting that high parental educational attainment has smaller protective effect against high BMI for Black than White youth. In fact, the association was only significant for Whites but not Blacks.

Our first finding is in line with the extensive literature on fundamental causes [47-49], social determinants of health (SDOH) [50-52]. A large body of research has shown that parental educational attainment is associated with better health and well-being [41,53-55] and also lower risk of obesity [56].

Our previous work on MDRs shows high SES Black youth remain at an increased risk of high BMI compared to high SES Whites [32,39,46], a pattern which is seen for a wide range of SES indicators, health outcomes, youth, adults, and older adults [57-60]. Similar patterns are reported for educational attainment[39,46], income[32,61], employment[62], and marital status [63] on obesity[39,46], depression[61], anxiety[63], self-rated health[64,65], chronic disease[66], and even mortality[62]. In several papers, smaller effects are shown for Blacks than Whites.

MDRs may be due to social stratification that operates through biological mechanisms such as those involved in respond to stress (e.g., allostatic load, weathering, metabolic syndrome) [67]. There is, however, a need for further studies to understand the role of biological and physiological mechanism that may explain MDRs on BMI [68-75].

We need to better understand the role of unsafe environment [76], food deserts [77-80], density of fast foods [81-84] and also availability of healthy food options [85] across locations based on the intersection of race and SES. Educational attainment has smaller effects to increase Blacks’ employment and enhance their life conditions, compared to Whites [53,54,86,87]. For example, a larger proportion of Blacks with high educational attainment remain under poverty [86]. We argue that residential segregation, racism, labor market discrimination, and limited resources in predominantly Black schools all contribute to MDRs of educational attainment on BMI [46].
We did not control for income for methodological and conceptual reasons. Some evidence suggests that income may be the reason educational attainment does not generate the very same health across racial and ethnic groups [88,89]. Thus, controlling income would be adjusting for the mediator, which introduces bias due to controlling for the intermediate variable [90]. Other evidence suggests that MDRs are more relevant to educational attainment than income, because less societal processes interfere with families to use their income, compared to the number of societal barriers that reduce Black families abilities to [88]. Thus, some evidence suggests that MDRs are most relevant to the distal than proximal SES indicator [88,91].

We see race as a political and social rather than a biological construct [92]. Social stratification by race is historically, politically, and legally patterned [93,94]. Through political power, race alters the distribution of the social determinants of health [92]. For example, marginalization of Black males in the US has had strong political impact in who gets elected, and how laws and policies are written [92]. Some strong evidence suggests that political party that gets into the office is also among major determinants of health disparities [92,93,95,96].

Research has shown again and again that good-faith policy intentions have not been able to effectively address health disparities. This is in part because of the differential effect of resources on health without talking about structural forces [92,93,95,96]. Social and health policy is written by politicians, and today’s political environment is highly polarized, there is gridlock in Congress, state legislatures behave along party lines, presidents and presidential candidates capitalize on totally different constituencies, lobbies, and corporate interests, and so forth. Thus, these politically and ideologically charged interventions may not easily gain political consensus to reduce race related stratification. However, structural context should be addressed if we want to eliminate health inequalities [92,93,95,96].

Implications

The results may have some implications for public, economic, social, and health policy. First, we argue that policy makers should not assume that SES indicators are equally protective against health problems including high BMI for various racial groups. As new policies are being implemented, there is a need for “impact analysis” to track effects on the population overall, as well as sub-population differences in such effects. Given the limited benefit of high SES on BMI among Black youths, we argue that providing incentives for health in predominantly Black areas may be required. An enhancement to the quality of education and schooling in predominantly Black areas are also needed, as well as resources to enable translation of educational attainment to tangible health outcomes for Black communities. Finally, reduction of racism and segregation, particularly in the job market, is needed if we want to help Black families be able to turn their educational attainment to health outcomes. Such societal interventions, through public policies would probably be more effective than individual-level interventions that overemphasize individual choices and preferences and ignore social stratification [97].

National and local policies are needed to reduce the racial/ethnic and SES disparities in BMI, including those that are caused by MDRs[45,46,58-60,63,64,91,98,99]. Additional investment on societal factors that can reduce risk of obesity in urban Black families, across SES levels. There is a need to reduce racial differences in availability and access to healthy food, walkability of living areas, availability of green spaces and parks, and other societal resources that can help families and youth to maintain low BMI and avoid obesity. To undo racial and ethnic disparities in obesity and related morbidity, there may be a need to seek structural changes that result in more equitable environmental opportunities for healthy food.

4.2. Future Research

There is also a need to conduct further studies that help us understand, based on race, why differences exist in youth with highly educated parents remain susceptible to obesity and high BMI. Research should assess how density of healthy and unhealthy food, walkability of living areas,
availability of green spaces and parks, and other structural determinants of obesity mediate or moderate the MDRs observed in this study. There is also a need to test the efficacy of various policies in reducing MDR related disparities in health.

4.1. Limitations

This study had some methodological and conceptual limitations. First, given the cross-sectional design of our data, causal inferences are not plausible. Sample size was imbalanced across racial groups, which is a common pattern in national surveys. In addition, we did not have access to a wide range of other SES indicators of the household such as income, employment, and occupation type. Finally, this study used an over-simplistic measure of BMI. Several other indicators such as waist to hip ratio, sub-cutaneous adiposity, and other indicators need to be studied. The results should be interpreted with knowing that we did not compare Non-Hispanic White and Non-Hispanic Blacks but all groups of Whites and Blacks. However, our robustness analysis did not show any difference in the interaction term when we limited the sample to Non_hispanic Whites and Blacks. Finally, we did not include area level SES indicators. Despite these limitations, we believe that this study extends the existing literature on race, SES, and BMI. We had previously shown similar findings in the FFCWS data. However, FFCWS was a non-representative study composed of economically at-risk families who were only selected from large cities. The results of the current study, however, are generalizable to the US youth sample, given the nationally representative nature of the sample.

5. Conclusion

In the United States, race bounds the health gains that follow parental educational attainment. While high parental educational attainment helps people stay healthy and avoid high risk behaviors such as smoking, the most privileged group gains the most and the least privileged groups gain the least from such potential. As a result, we should expect an additional risk of high BMI and obesity in middle-class Blacks. Researchers should not take a minimalistic and over-simplistic approach by focusing on health disparities among Blacks of low SES. They should consider that disparities can be observed across all SES levels, and the SES gap is only a part of the story. Given that health disparities are also faced by middle class Blacks, health disparity solutions should focus on other sections of Black communities, that may not be low SES but still have increased risk of poor health outcomes. Policy makers should also go beyond equalizing SES and address the barriers that are more common in the lives of Blacks and hinder their ability to turn their available resources into tangible health outcomes.

Ethics

All youth who participated in the PATH study provided assent. All their parents / guardians / caregivers provided a written informed consent. The PATH study protocol was approved by the Westat institutional review board.

Funding. Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health (NIH) and FDA Center for Tobacco Products (CTP) under Award Number U54CA229974. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the Food and Drug Administration. Assari and Bazargan are also supported by other NIH grants such as U54MD008149, U54MD007598, U54TR001627, and R25 MD007610.

Acknowledgment. The publicly available PATH data were used for this study.
Conflicts of Interest. The authors declare no conflict of interest.

Author Contributions. S.A. conceptualized the study, analyzed the data, and prepared the first draft of the paper. All other authors contributed to the conceptualization and revision of the paper. All authors approved the final draft.

REFERENCES

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).