Open Review

I would not like to sign my review report

I would like to sign my review report

Extensive editing of English language and style required

Moderate English changes required

English language and style are fine/minor spell check required

I don't feel qualified to judge about the English language and style

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>Can be improved</th>
<th>Must be improved</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the introduction provide sufficient background and include all relevant references?</td>
<td>(x)</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Is the research design appropriate?</td>
<td>(x)</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Are the methods adequately described?</td>
<td>()</td>
<td>(x)</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Are the results clearly presented?</td>
<td>(x)</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Are the conclusions supported by the results?</td>
<td>(x)</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

Comments and Suggestions for Authors

I'd like to thank authors for responding to the review. I think the major improvement is the clarification of the aims of the publication and focus on the non-urban wind sectors and the improvements in the presentation of the data. However, the paper does still report and discuss terrestrial origin measurements and some acknowledgement of the great deal of literature that exists on biogenic emissions (e.g. UC Berkeley forest measurements) would have been beneficial in additional to a discussion of other global measurements of mixed terrestrial biogenic/marine influenced VOC measures such as the MPIC Cyphex measurements.

We thank the reviewer for taking the time to read the manuscript again.

We appreciate that there is a great deal of literature on biogenic emissions and on measurements of biogenic species in a variety of contexts. We thank the reviewer for pointing us towards the CYPHEX campaign. Although very interesting, we have decided to constrain ourselves to the Australian region in order to keep the manuscript focused. However, we appreciate that more should be said about terrestrial VOCs in the introduction so have added the following text (in italics) to provide better context:

“Within the Australian region, there have been a number of air quality studies, including some specifically aimed at testing the Australian Air Quality Forecasting System [15] in Sydney [16] and Melbourne [17]. The primary focus of these studies was testing the prediction of ozone levels in the urban environment [18]. There have also been Australian campaigns focused on understanding aerosol formation and composition in the urban environment e.g. [19-21]; coastal environments [22-24]; and within eucalypt forests [25,26]. Recent modelling studies have highlighted the importance of biogenic emissions for ozone formation in the Sydney region [27,28]. In their source apportionment study, Nguyen Duc et al. [27] found that biogenic emissions are the main contributor to ozone levels in the greater Sydney region year round. Similarly, Utembe et al. [28] found that removing biogenic emissions in their model removed all ozone episodes during extreme heat episodes. Biogenic emissions also influence PM2.5 levels in the region, as evidenced by the modelling source attribution study of Chang et al. [29]. Also, data from the Sydney Particle Study [21] indicate that up to 70% of the organic matter fraction of PM2.5 aerosol in Sydney in summer is of biogenic origin [30].
Despite their documented impact on air quality, biogenic emissions in this region are still poorly understood. Commonly used biogenic emission models such as the Model of Emissions of Gases and Aerosols from Nature (MEGAN) [31] have been found to perform poorly over south-east Australia [32]. Recent modelling work [33,34] has highlighted potential issues relating to the light-dependency (or lack thereof) of monoterpene emissions and to the sensitivity of isoprene emissions to drought conditions.

I would still like to see more detail on the inlet losses, i.e. how was the test done, was the inlet changed during the campaign, how long was it, comment on the contamination of the inlet my urban wind sectors during clean periods by re-volatilization of adsorbed components or at least an acknowledgement that these things are a source of error. 5% losses of a large concentration are can be a large source of contamination during "clean air" periods.

We have modified the text to add more detail about the inlet losses test:

“This system has been tested for VOC losses by introducing various VOC mixtures in the ppb range to the PTRMS both via the inlet tube and directly and comparing the measured signals. Using this method, the upper bound to the inlet losses was estimated to be <5%. As a single inlet was used during the entire campaign, it is possible that VOCs adsorbed to the inlet wall during sampling of polluted conditions may have desorbed during sampling of clean conditions and contributed a small error to the measurements.”

We have also added the length of the inlet (15 meters).