Response to Reviewer 3 Comments

Thank you very much for your affirmation of the study topic and the English language and style of the manuscript and specific suggestions for the deficiencies in this paper. We have revised them one by one. The following is the detailed description of the revision.

Point 1: Line 42-46: Complete the reference, please.

Response 1: I have made some changes in Introduction, the sentence in L42-46 was deleted. But I also have explained the rule of canopy on rainfall kinetic energy in L52-55 ‘In forests, the canopy changed rainfall kinetic energy (KE) by intercepting precipitation and thus modifying raindrop size and velocity [14]. Throughfall kinetic energy (TKE) is a usually used indicator to express the potential of rainfall erosivity and predict soil erosion rates [15,16]’ in the manuscript with ‘Track Changes’ mode. The following line numbers were all in the manuscript with ‘Track Changes’ mode.

Point 2: Line 84: Determination the soil type in accordance with international classification would make the research more transparent for audience. For example, the World Reference Base for Soil Resources (WRB) and Soil Survey Division Staff, USDA classification are the global correlation scheme for soil classification and international communication.

Response 2: I have added the soil type based on WRB shown in L35-36: Red soils, classified as Plinthosols in the World Reference Base for Soil Resources and characterized by acidic, nutrient deficient, poor in organic matter and high erodibility are widely studied in the world.

Point 3: Line 92: “2” present as a upper index, please.

Response 3: I have corrected it to upper index shown in L116: 100 m².

Point 4: Line 103: Complete the information about the period of measurements. Analysis of dry periods preceding the occurrence of rain are an important indicator and would be a valuable complement to the presented research. Were the rains the same on the both sites, in a distance of 1 km (especially to the volume of raindrops)?

Response 4: The volumetric moisture content of topsoil preceding the occurrence of rain was an important factor in the paper, I have added the information shown in L131-133: The volumetric moisture content of surface soil preceding the occurrence of rain ranged from 0.126 to 0.257 in the bare plot and from 0.159 to 0.305 in the forest plot. The rainfall
characteristics of the two sites were the same due to their short distance, no mountains between them and no microclimate.

Point 5: Line 134: Correct the size of letters.

Response 5: I have corrected the size of letters ‘were conducted’ shown in L174.

Point 6: Line 230: The letter “Y” is not needed. Figure 7 should rather be closer to the text, where authors first time informed about the presented results, not in the discussion part.

Response 6: The letter “Y” has been moved. It was Figure 5 showed the information presented and I have changed Figure 7 to Figure 5 shown in L293, so I did not change the position of Figure 7.

Point 7: Lines 251 -253: The sentence is rather the part of discussion, and should be moved.

Response 7: The sentence has been deleted and moved to L348-350: It was also suggested that masson pine canopy had a more obvious mitigation effect on KE under high rainfall intensity by comparison with low rainfall intensity in the study area.

Point 8: Figure 3: It could be presented on one page size.

Response 8: Figure 3 has been presented on one page size.

Point 9: Figure 5: Please change the sequence on Y axis. The lower value should be presented from the down and the higher value on the top. It could be easier to follow the results and comments.

Response 9: The sequence on Y axis have been changed.

![Figure 5. Volume ratio of raindrops with different size raindrops under different rainfall intensity. The dashed red lines indicate the volume ratio of large drops, and the dashed black lines represent the volume ratio of small drops.](image-url)