a. **Reviewer 3:**

1. **Question 1:** in the abstract state and enhance the contributions. A large-scale content-based image retrieval platform that combines SIFT and SURF brings technological value, but the original scientific aspect is not included.

 Response 1: thank you for these interesting remarks. In fact, our research consisted on selecting the best descriptors for images retrieval and that must be adaptable for dimensionality reduction. On the one hand, we proposed a combination of descriptors that allows to improve the precision. On the other hand, the proposed combination of descriptors is well adapted for dimensionality reduction, where the selection of most significant values of descriptors (using PCA method) allowed to reduce the research time with the maintain of precision [30]. As result, our method is well suited for large scale images.

2. **Question 2:** the overall paper structure is good, but it lacks the scientific contributions. An image retrieval system based on SIFT and SURF is not so new.

 Response 1: in fact, the use of SIFT and SURF in not so new. Our contribution consists of exploiting both of them in a coordinate way after image denoising. On the other hand, our contribution is presented within three parts:

 a. the development of an efficient method of content-based image retrieval that combines the descriptors of SIFT and SURF

 b. a portable GPU implementation that allows to accelerate the process of indexation and research within multimedia databases. This implementation allows to exploit both NIVIDIA and AMD/ATI cards.

 c. cloud-based implementation that allows an easier exploitation of our GPU-based method without the need to download, install and configure software and hardware. The platform handles multi-user connection based on Docker containers orchestration architecture.

 Finally, the new version of the paper has been improved by validating results with larger and more diversified databases such as Corel-10k and GIHIM. The Corel database presents 10000 images of size 192x128, classed in 100 categories where each class contains 100 images. The GHIM-10k database contains also 10000 images of size 300x400, classed in 20 classes where each category contains 500 images. These experiments confirmed our previous results by the improvement of accuracy thanks to the efficient combination of SIFT and SURF descriptors. The recall/precision were computing for the Top50 in addition to the Top20 similar images.