Reviewer 1:
This is an impressive work presenting a new MPPT method for photovoltaic (PV) battery chargers. However, authors are highly encouraged to improve their writing style. Some comments are listed as follows:
Page 2 Paragraph 2 Line 7: The “an small input” should be “a small input”; Page 2 Paragraph 3 Line 5: The “consists on” should be “consists of”; Page 2 Paragraph 3 Line 12: The “without affect” should be “without affecting”; Page 5 Part 3 Paragraph 1 Line 1: The “a MPPT” should be “an MPPT”; Page 5 Part 3 Paragraph 2 Line 2: The “an small input” should be “a small input”; Page 6 The Paragraph starting with “The strategy of the proposed MPPT method” Line 4: “to increase or decrease” should be “to increase or to decrease”; Page 6 The Paragraph starting with “Since |δ| < 2|δdc| tends”: This sentence is not clear enough;
Page 6 The Paragraph starting with “When the current error becomes” Line 1: The “because” should be “because of”;

English corrections have been made in the final version of the paper.

Page 10 Figure 12: The authors are suggested to have a clear explanation about the meaning of curve in each sub figure and their method to get the result (i.e. the tracking time is less than 100ms);

Labels in Fig.12 have been changed to match the name of the variables used in the paper. An explanation has been added in the figure caption. The settling time of 0.1s can be better observed in the new figure.

Page 10 Figure 12: The authors are encouraged to give a higher resolution figure and smaller scale of grid in specific region;

Fig.12 has been completely redrawn in vector graphics format. The simulation was performed using PSIM, and the output data has been exported to a CSV file and plotted in Matlab. The region of the power trace that has been zoomed takes intentionally several cycles, in order to probe that the efficiency measured is in steady regime.

Part 6: In practice, Partial Shading Condition (PSC) is a common problem in MPPT. PSC may affect the MPP accuracy even damage the circuit. The authors are encouraged to discuss their strategy for Partial Shading Condition or to point this problem out. The authors are also encouraged to refer the following paper “An NNwC MPPT-based energy supply solution for sensor nodes in buildings and its feasibility study”, which well discussed this topic;
Part 6: The MPPT is a dynamic process related with not only irradiance but also temperature, there could be multiple maximum and the proposed MPPT method may be trapped in a local maximum. The authors are encouraged to discuss or to point out this problem.

The paper presents a very fast power-climbing method that stabilizes in a local MPP. In case of PSC, the method has to be combined with Global MPPT strategies, either based on continuous search or based on MPP predictions from irradiance
and temperature real-time measurements. This is beyond the scope of the paper. However, the speed of convergence of the proposed method offers a realistic chance to implement a continuous-search Global MPPT with small impact on PV efficiency, just by changing the duty-cycle stored in the PI’s integral action (value stored in the Z^{-1} in Fig.10) and letting the MPPT to complete a new tracking. Initial and final powers and duty-cycles are stored to find the Global MPP. Authors hope to publish these global strategies in a different article.