Probabilistic prediction of strength and fracture toughness scatters for ceramics using normal distribution

Chunguo Zhang; Shuangge Yang

Key Laboratory of Road Construction Technology and Equipment, MOE, Chang’an University, Xi’an 710064, China; zcquo2008@163.com (C.G. Zhang); ysg2307105477@163.com (S.G. Yang)

Abstract: Tensile strength f_t and fracture toughness K_{IC} of ceramic are not deterministic properties or fixed values, but fluctuate within certain range. A non-linear elastic fracture mechanics model was developed in this study and combined with the common normal distribution to predict ceramic’s f_t and K_{IC} with consideration of their scatters in a statistical sense. In the model, the relative characteristic crack a^*a_0/G (characteristic crack a^*a_0, average grain size G) was determined based on the fracture measurements on five types of ceramics with different G from 2 to 20 μm in the reference. The combined application of the model and normal distribution has two functions: (i) probabilistic f_t and K_{IC} can be derived from seemingly randomly varied fracture tests on small ceramic specimens containing different initial defects/cracks, and (ii) with f_t or K_{IC} values (corresponding mean and standard deviation), fracture strength of heterogeneous samples with and without cracks can be predicted by considering scatter described by specified reliability. For the fine ceramics, the predicted results containing the mean and the upper & lower bounds with 96% reliability gained with the model, match very well with the experimental results (a^*, σ_0).

Keywords: Tensile strength; Fracture toughness; Average grain size; Normal distribution; Ceramic

1. Introduction

One of the biggest challenges in material sensitive design is to accurately and reliably predict the fundamental mechanical properties of materials. However, the physical properties such as tensile strength f_t and fracture toughness K_{IC} are not fixed or deterministic, and fluctuate in certain range, which has been well recognized recently [1-3]. The inevitable variation in mechanical property of materials is mainly due to the heterogeneity and the activation of various fracture mechanisms during the crack-microstructure interactions [4]. For polycrystalline brittle materials such as fine-grained ceramics [5-7] and coarse-grained rocks [8-10], the average grain size G has a profound influence on material properties including f_t and K_{IC}. For composites and 3D-printed scaffolds [11], their unit cells have a similar role as that of G.

Non-linear elastic fracture of those solids initiated from shallow defects comparable to their grain sizes can bring out significant information on the inherent relationship between microstructure and material properties. Besides separate influence on f_t and K_{IC}, the effect of G on the combined parameter $0.25*(K_{IC}/f_t)^2$, commonly known as characteristic crack a^*a_0, indicating the transition from f_t-controlled to K_{IC}-controlled fracture of brittle solid [12, 13], is becoming increasingly important.

Taylor has done numerous studies on characteristic length l_0, proportional to a^*a_0, and proposed the world-renowned theory of critical distance (TCD) [14-19]. It has been found that the l_0 varies from 1 to 10 times of grain size G depending on the materials. Generally speaking, $l_0 = (3-4)G$ can be adopted for various fine-grained ceramics. More recently, we reanalysed the fracture measurements data on...
four fine-grained ceramics with G from 2 to 20 μm and on two coarse-grained rocks with $G = 2.5$ and 10 mm, and also found a semi-quantitative relation of $a^*_{ch} \geq 3G$ [7, 10]. Therefore, an explicit relationship between a^*_{ch} and G is an urgent need not only for the fundamental knowledge of microstructure-driven material research, but also for the safe design application. For fracture data analysis methods, the common practice is that fracture strength is first obtained from experiment and then fitted by various fracture models, and the scatters are usually indicated by the maximum and minimum values but rarely described with a specified reliability [20-26]. The problem is that the models cannot describe the scatter of physical properties or fracture strength with specified reliability. In addition, many parameters in the models are fitting parameters which carry little physical significance. In this study, five groups of fracture measurements on ceramics specimens with G from 2 to 20 μm and containing different initial defects from 100 nm to 800 μm [27-28] were reanalysed to determine the relative characteristic crack $C = a^*_{ch}/G$. Based on this, a non-LEFM analytical model is proposed to predict f_t and K_c of ceramics as function of grain size G from common fracture measurements, and to predict fracture strength of specimens with and without small defects if f_t or K_c are available. Instead of curve fitting, the common normal distribution was used to analyse the fracture behaviour of ceramics to consider the scatters of physical and mechanical properties.

2. Determination of the relative characteristic crack in non-LEFM model

Based on our previous work [7], fracture strength of ceramic specimens containing small flaws/cracks can be assessed by the following formula,

$$\sigma_N = f_t \cdot \frac{1}{\sqrt{1 + \frac{a}{C_G}}} \tag{1a}$$

where the combined parameter $C = a^*_{ch} = 0.25(K_c/f_t)^2$ is a material constant defined by the intersection of two fracture criteria K_c and f_t, and σ_N is the engineering stress without consideration of the influence of flaws.

Although Weibull distribution has been widely used to determine the fracture behavior of materials, its role has usually been confined to fit experimental data rather than providing predictive insight into material properties (e.g. f_t and K_c) and their experimental scatters [4]. In our previous study [7, 10], another common statistical analysis method of normal distribution has been used to analyze experimental data of ceramic fracture after roughly assessing the relative characteristic crack $C = (a^*/a)(G)$ at intervals of 0.25. In this study, we accurately determine the C value by continuously changing its value instead of interval.

The average grain size G is the microstructure characteristic of a polycrystalline material which can be statistically measured separately. If the C is a fixed value, Eq. (1a) can be linearized by considering σ_N and $1/[1+a/(C_G)]^{0.5}$ as ordinate and abscissa respectively, then it can be used in conjunction with the common normal distribution to make probabilistic analysis on f_t with 96% reliability. That is, if an experimental data (\(\sigma_N, a\)) is measured, the f_t from Eq. (1a) becomes a single parameter after giving C a fixed value. Having numerous pairs of values of original crack a and engineering stress σ_N obtained from specimens with different α ratio (=\(\sigma_W\)), the data points (\(\sigma_N, 1/[1+a/(C_G)]^{0.5}\)) obtained can be plotted with these quantities considered as ordinate and abscissa respectively. Using Eq. (1a), a group of f_t values can be easily statistically analysed by normal distribution methodology.

Similarly, the following equation can be obtained by substituting the relation $C = 0.25(K_c/f_t)^2$ into Eq. (1a), which is used to calculate K_c value from fracture measurement (\(\sigma_N, a\)). Similarly, Eq. (1b) combined with normal distribution can be used to do statistical analyses of K_c values from experimental measurements data if the C is a fixed value.

$$\sigma_N = K_{IC} \cdot \frac{1}{2\sqrt{a+C_G}} \tag{1b}$$

Therefore, a determined value of C urgently needs to be included in the two formulas of Eq. (1). For this reason, the relative characteristic crack $C = (a^*/a)(G)$ independent of grain size G is assessed
based on the experimental data (σ_N, a) from five ceramics with different G from 2 to 20 μm. In total, 14 experimental data points (σ_N, a) of the Sialon with average grain size $G = 2$ μm, 29 points of the SiC with $G = 3$ μm, 25 points of Si$_3$N$_4$ with $G = 3$ μm, 16 points of Si$_3$N$_4$ with $G = 4$ μm, and 42 points of Al$_2$O$_3$ with $G = 20$ μm, were digitized from the references [28].

Based on the fracture measurements (σ_N, a) of the five ceramics considered in this study, each group of f_t values from Eq. (1a) and K_C values from Eq. (1b) was analyzed using two ways respectively to ensure reliability of analyzed results.

Fig. 1 illustrates the evolution of standard deviation σ of tensile strength f_t from Eq. (1) as the relative characteristic crack $C (= a^{*}/G)$ varies continuously. C_0 is defined as the critical value of C signifying the σ transitioned from decrease to increase. That is the C_0 value is determined by the condition that the σ value is minimum. When the relative characteristic crack C gradually deviates from the C_0 value, σ increases accordingly. According to the analyzed results of the five ceramics with different G from 2 to 20 μm, it can be found that C_0 value is independent of grain size and fluctuates in a range from 2.8 to 4.7.

Due to the fact that the largest number of experimental data points selected in this analysis is 42 from Al$_2$O$_3$ fracture, and the minimum number is mere 14 from Sialon. Considering the effect of the fewer number of data points (14 to 42 points) in each group of fracture measurements, we take the average of C_0 values (i.e. 3.380 in this analysis) obtained from the fracture measurements of the five ceramics as the determined value of C, which at least should be one of the accepted and reasonable ways.
Figure 1. (a) Schematic diagram showing variation of f_t distribution or standard deviation σ with C ($= a^{*} / G$), and σ as a function of C determined by normal distribution for: (b) Sialon, (c) SiC, (d) Si$_3$N$_4$ with $G = 3 \mu m$, (e) Si$_3$N$_4$ with $G = 4 \mu m$, (f) Al$_2$O$_3$.

For the analysis of f_t distribution in Fig. 1, f_t is derived from fracture measurement data (σ_N, a) through Eq. (1a), in which σ_N and $1/[1+a/(C \cdot G)]^{0.5}$ follow a linear relation and f_t in MPa is the slope of the straight line through the origin. For each data point (σ_N, a), the angle between the abscissa and the straight line through the origin and the considered point approaches 90^0 because the tangent of angle indicating f_t value is usually around several hundred. Therefore, any tiny error in the digitization of data point (a, σ_N) can result in significant fluctuation in the corresponding f_t value.

For this reason, we tried another statistic method to determine the C value based on the same five groups of ceramic fracture measurements. Fig. 2 illustrates the evolution of the sum of vertical distances of all the experimental points to the straight line indicating the average of f_t values from Eq. (1a) as C varies continuously. C_0 value is determined by the condition that the sum of vertical distances is minimum. It is evident that the sum of vertical distances gradually increases when the C deviates from C_0. It can also be found that C_0 value is independent of the grain size G and fluctuates in a range from 2.6 to 4.3. Again, we took the average of C_0 values obtained from the five different ceramics fracture as the determined C value, i.e. 3.1788 in this analysis.
Figure 2. (a) Schematic diagram showing the vertical distance of experimental data to the straight line indicating the mean of \(f_t \) values for a selected \(C \), and the sum of the vertical distances of all points to the straight line as a function of \(C \) for: (b) Sialon, (c) SiC, (d) Si₃N₄ with \(G = 3 \mu m \), (e) Si₃N₄ with \(G = 4 \mu m \), (f) Al₂O₃.

Fig. 3 illustrates the evolution of standard deviation \(\sigma_k \) of \(K_{IC} \) from Eq. (1b) determined by normal distribution as the relative characteristic crack \(C = a^{*}_{eb}/G \) varies continuously for the five ceramics, and the \(C_0 \) value is determined by the condition the \(\sigma_k \) is minimum. The same as above, \(C_0 \) value is independent of the grain size \(G \) and fluctuates in narrower range from 2.7 to 4.1 in comparison to the results of \(f_t \) distribution. The average of \(C_0 \) values obtained from the five different ceramics fracture is 3.1426 in this analysis.
Figure 3. (a) Schematic diagram showing variation of K_c distribution or standard deviation σ_k with $C = a^*_{ch}/G$, and σ_k as a function of C determined by normal distribution for: (b) Sialon, (c) SiC, (d) Si$_3$N$_4$ with $G = 3 \mu m$, (e) Si$_3$N$_4$ with $G = 4 \mu m$, (f) Al$_2$O$_3$.

Fig. 4 illustrates the evolution of the range of $(K_c)_{\text{max}} - (K_c)_{\text{min}}$ from Eq. (1b) as the relative characteristic crack $C = a^*_{ch}/G$ varies continuously for the five ceramics, and the C_0 value is determined by the condition the range is minimum. Again, the C_0 value is independent of the grain size G and fluctuates in narrower range from 2.6 to 4.0 in comparison to the results of f_i distribution. The average of C_0 values obtained from the five different ceramics fracture is 3.1288 in this analysis.
According to the above analyses based on the fracture measurements of the five ceramic with largely different G, the relative characteristic crack $C = a^{*}\text{ch}/G$ value is indeed independent of the grain size G, and is equal to 3.380 and 3.1788 obtained from f distribution, and 3.1426 and 3.1288 from K_{IC} distribution. It should be noted that the characteristic crack length $a^{*}\text{ch} = C \cdot G$ is a specified crack indicating the transition from f-controlled fracture to K_{IC}-controlled fracture. Furthermore, the dominant non-LEFM mechanism of brittle materials such as ceramic is defects in solids, which is linked to microstructure characteristic G. If one quantitatively links the specified crack length $a^{*}\text{ch} = \pi \cdot G$ between the two should be a good choice under condition of $C \approx 3.1-3.4$ from the above f and K_{IC} distribution analyses. In addition, the C values from K_{IC} distribution is more stable than those from f distribution, which will be proved in the following section. For simplicity and consistency between f distribution and K_{IC} distribution, $C_0 = a^{*}\text{ch}/G = \pi$ is selected in this study.

3. Probabilistic strength and fracture toughness analyses
Following the determination of the relative characteristic crack $C = \pi$ based on the fracture behaviour of five ceramics with G from 2 to 20 μm, Eq. (1) can now be rewritten as follows.

$$\sigma_N = f_t \cdot \frac{1}{\sqrt{1 + \frac{a}{\pi G}}} = f_t \cdot \eta(a, G) \quad (2a)$$

$$\sigma_N = K_{IC} \cdot \frac{1}{2\sqrt{a + \pi G}} = K_{IC} \cdot L_e(a, G) \quad (2b)$$

The dimensionless $\eta(a, G)$ and equivalent length $L_e(a, G)$ in Eq. (2) are wholly determined for a specified sample. For any group of ceramic specimens, the seemingly randomly varied fracture measurements data (σ, a) can be used to obtain a group of f_i value using Eq. (2a) and K_{IC} values using Eq. (2b) which can be easily analysed by normal distribution to get corresponding mean and standard deviation. With the mean μ and standard deviation σ of f_i distribution, Eq. (2a) can be rewritten to include the mean and upper & lower bounds with 96% reliability indicating f_i scatter during fracture behaviour.

$$\sigma_N = (\mu_f \pm 2\sigma_f) \cdot \frac{1}{\sqrt{1 + \frac{a}{\pi G}}} = (\mu_f \pm 2\sigma_f) \cdot \eta(a, G) \quad (3a)$$

Similarly, Eq. (2b) can be rewritten as follows.

$$\sigma_N = (\mu_k \pm 2\sigma_k) \cdot \frac{1}{2\sqrt{a + \pi G}} = (\mu_k \pm 2\sigma_k) \cdot L_e(a, G) \quad (3b)$$

The problem of the most existing probabilistic models is that their do not consider the scatters of f_i, K_{IC} and fracture strength σ_N prior to experimental measurements [4]. After determinations of the corresponding mean and standard deviation, three σ_N-$\eta(a, G)$ linear relations from f_i distribution and three σ_N-$L_e(a, G)$ straight lines based on K_{IC} distribution, can be plotted together including the mean line and upper & lower bounds indicating both f_i and K_{IC} scatters.

In Figs. 5 to 9, we take the five ceramic-fracture cases as examples to illustrate the combined application of the non-LEFM model Eq. (3) and the normal distribution, and to check the validity and reliability of the $C = \pi$. For each group of ceramic fracture, f_i normal distribution illustrated in Figs. 5(a) to 9(a) and K_{IC} normal distribution in Figs. 5(b) to 9(b) are evaluated from the same experimental measurements (σ, a). Then the three predicted linear relations from Eq. (3a) using μ and σ of f_i distribution are shown in Figs. 5(c) to 9(c), and the three predicted straight lines from Eq. (3b) with the μ and $\mu \pm 2\sigma$ from K_{IC} distribution are illustrated in Figs. 5(d) to 9(d).

Obviously, both f_i and K_{IC} with 96% reliability can be successfully deduced from the seemingly randomly varied experimental data points (σ, a). It can also be seen that the middle straight lines indicating the mean values of f_i or K_{IC} are almost the same as the corresponding fitted curves respectively. As we all know, the commonly used curve fitting methodology cannot describe the experimental scatter of fracture behaviour, but the proposed model can provide more scientific descriptions. This adds a significant understanding for the fracture of ceramic with and without small defects. Similarly, the scatters of fracture strength σ_N due to the stochastic characteristic of microstructure and the activation of various fracture mechanisms during the crack-microstructure interaction cannot be identified by the common curve fitting methodology.

Because the μ and σ values are constants, the corresponding slopes of the three straight lines of σ_N-$\eta(a, G)$ relation indicating mean and upper & lower bounds are kept as constants as $\eta(a, G)$ increase in Figs. 5(c) to 9(c), leading to more σ_N scatter, which matches very well the experimental results reported in the literature [27-28]. This indicates that a specimen with higher $\eta(a, G)$ value will have larger fluctuation of σ_N during fracture. That is larger specimen has larger σ_N scatter which is absolutely reasonable in physics concept. Here, it should be noted that the percentage of σ_N variation keeps constant in theory for various specimens with different $\eta(a, G)$ as the mean and standard deviation are constant. The same conclusions can also be observed from the corresponding results obtained from K_{IC} distribution in Figs. 5(d) to 9(d).
Figure 5. (a) f_t normal distribution and (b) K_I normal distribution evaluated from the same fracture measurements ($\sigma_{N, a}$) of Sialon. Three predicted straight lines indicating the mean and upper & lower bounds (c) from Eq. (3a) and (d) from Eq. (3b) using the analysed results listed in (a) and (b) respectively together with the experimental data points.

It should be noted that the two linear relations of $\sigma_N - \eta(a, G)$ and $\sigma_N - L_e (a, G)$ pass through their respective origins, which are fixed points from perspectives of mathematics and physics. During the process of application, this is very useful to helping determine the slopes of the linear relations, which indicate the f_t or K_I values. In addition, it can be seen that K_I normal distribution is better than the f_t normal distribution from the histograms. Thus, it is reasonable that the determination of C value ($= \pi$) in Section 2 thought more of the K_I analyses.
Figure 6. (a) f_t normal distribution and (b) K_c normal distribution evaluated from the same fracture measurements (σ_N, a) of SiC. Three predicted straight lines indicating the mean and upper & lower bounds (c) from Eq. (3a) and (d) from Eq. (3b) using the analysed results listed in (a) and (b) respectively together with the experimental data points.

Figure 7. (a) f_t normal distribution and (b) K_c normal distribution evaluated from the same fracture measurements (σ_N, a) of Si$_3$N$_4$ with $G = 3 \, \mu m$. Three predicted straight lines indicating the mean and upper & lower bounds (c) from Eq. (3a) and (d) from Eq. (3b) using the analysed results listed in (a) and (b) respectively together with the experimental data points.
4. Probabilistic prediction of ceramic fracture

By employing the two concepts of dimensionless $\eta(a, G)$ and equivalent length $L_e(a, G)$, the non-linear relation in Eq. (1) for assessing the fracture strength of ceramic specimen is linearized in relation as listed in Eq. (2). The non-LEFM model combined with the common normal distribution can easily deduce ceramic’s f_t and K_{IC} with a specified reliability from the seemingly randomly varied fracture measurements (σ_N, a) as shown in Eq. (3).

In fact, the linearized non-LEFM model with a specified reliability or Eq. (3) can be conveniently transformed to an application model in non-linear relation of σ_N-a for finally predicting the fracture strength σ_N. If corresponding mean and standard deviation of material strength f_t or fracture toughness K_{IC} are available, the fracture strength of notched specimens with and without small defects can be easily predicted with a specified reliability through Eq. (3). Using the values of f_t property obtained and shown in Figs. 5(a) to 9(a), here we take Eq. (3a) as an example to show how to apply the model in non-linear relation for predicting σ_N with a specified reliability.

The three predicted σ_N-a curves with mean and upper & lower bounds are shown in Fig. 10 together with the experimental data points. For comparison, the fitted curves for the non-linear relationship of σ_N-a using Eq. (3a) are also added to the figure. A direct comparison between the experimental results and the predicted curves shows that the non-LEFM model or Eq. (3a) can reliably predict the fracture of notch ceramics as the predicted curves with 96% reliability cover all the data points. In addition, the middle curve indicating the mean of f_t value is more appropriate than the best fitted curve in each case. More importantly, those σ_N variations are inevitable for ceramic fracture. The proposed model can describe the σ_N scatter with a specified reliability, which is beyond the job of common curve fitting.
Figure 10. Fracture predictions using Eq. (3a) with the μ and σ values from fₙ normal distribution, including mean and upper & lower bounds with 96% reliability together with the experimental data points (σ₀, a) and fitted curve for: (a) Sialon, (b) SiC, (c) Si₃N₄ with G = 3 μm, (d) Si₃N₄ with G = 4 μm, and (f) Al₂O₃.

5. Discussion

In most of the existing probabilistic models, the fracture measurements data (a, σ₀) is usually first obtained from experiment and then fitted by linearized formula to get fᵢ and KᵢC values. The problem of the most existing models is that they do not allow the scatters of fᵢ and KᵢC data to be predicted before the experimental testing. As we all known, it is easy to establish a normal distribution for a group of data (e.g. fᵢ or KᵢC values) with a specified reliability if a group of samples without defects or cracks are tested. But such a practical application soon becomes impractical for a wide crack range from the fᵢ-controlled fracture over non-LEFM to finally the KᵢC-controlled fracture. The non-LEFM model in Eq. (3) removes the need of curve fitting for fracture measurements data, and considers the scatters of mechanical properties fᵢ and KᵢC through the upper and lower bounds with 96% reliability.

In the model, the microstructure characteristic G of ceramic is explicitly linked to both fᵢ and KᵢC. In the present study, the five ceramics, Sialon, SiC, Si₃N₄ with G = 3 μm, Si₃N₄ with G = 4 μm, and Al₂O₃, were considered, and they have hugely different grain size G ranged from 2 to 20 μm. Since
\[a^*_{ch} = 0.25(Kc/f_t) \] they also have different characteristic crack \(a^*_{ch} \) values due to obvious difference in material properties \(f_t \) and \(Kc \). Most recently, we studied the relative characteristic crack \(C = a^*_{ch}/G \) at an interval of 0.25 from 2 to 4.5, and found \(C \geq 3.0 \). Following the conclusion, the present study further found the \(C = \pi \) (or \(a^*_{ch} = \pi \cdot G \)) is appropriate to consider the effect of microstructure characteristic \(G \) on the \(a^*_{ch} \) value indicating the transition from \(f_t \)-controlled fracture to \(Kc \)-controlled fracture.

Eq. (3) can be easily used in either linear relations \([\sigma - \eta(a, G), \sigma - L(a, G)]\) or non-linear relations \((\sigma - \eta)\) as required. It should be noted that the predicted results (e.g. \(f_t, Kc \) and \(\sigma_t \)) with 96% reliability do not change with the different forms of non-LEFM model, which makes the combined use of the proposed model and normal distribution more meaningful and easier in practical applications and data analysis. Furthermore, the \(\sigma - \eta(a, G) \) and \(\sigma - L(a, G) \) linear relations through the respective origins make the non-LEFM model easier to determine \(f_t \) and \(Kc \) values as the origin is absolutely fixed.

Substituting Eq. (1a) into Eq. (1b), the mechanical properties \(f_t \) and \(Kc \) can be linked together through the average grain size \(G \) and the relative characteristic crack \(C = \pi \) as shown in Eq. (4). In another word, the microstructure \(G \) has direct influence on \(f_t \) and \(Kc \) of ceramic.

\[Kc = f_t \cdot 2\sqrt{\pi \cdot G} \tag{4} \]

To have a better understanding, the \(\sigma - \eta(a, G) \) linear relations in Figs. 5(c) – 9(c) were plotted together to show the influence of microstructure characteristic \(G \) on \(f_t \) value. To make it clearer, three different ceramics with different \(G \) are shown in Fig. 11(a), and two types of Si3N4 ceramic with slightly different \(G \) are illustrated in Fig. 11(b) in which only mean lines are given because the experimental points get close each other due to that the two materials are Si3N4 and have similar \(G \) values. Obviously, both \(f_t \) and \(Kc \) have been explicitly linked together through the average grain size, in which the fracture toughness \(Kc \) is determined from Eq. (4) based on the \(f_t \) value and \(G \) value. Grain size \(G \) has significant influence on \(f_t \) and \(Kc \), and can explicitly link the two properties.

![Figure 11](image.png)

Figure 11. Comparison of different ceramic fracture indicating the \(G \) influence on \(f_t \) and \(Kc \): (a) Sialon, SiC and Al2O3, (b) Si3N4 with \(G = 3 \mu m \) and \(G = 4 \mu m \).

In this study, five groups of fracture data on ceramics with average grain size \(G \) from 2 to 20 \(\mu m \) have been analyzed. Using the fracture data, it has been proven the proposed non-LEFM model and normal distribution can be combined used to (i) deduce both \(f_t \) and \(Kc \) with a specified reliability from the seeming randomly varied fracture measurement and (ii) probabilistic predict \(\sigma_t \) of ceramic specimens with and without defects if \(f_t \) or \(Kc \) values (corresponding mean and standard deviation) are available. The predictions including mean and upper & lower bounds can be either linear relation as shown in Figs. (5) to (9), or non-linear relation in Fig. 10 as required.
6. Conclusions

A non-LEFM model for ceramic fracture is proposed and combined with normal distribution, which is applicable to predictions of f_t, K_{IC} and σ_N with consideration of their scatters. The relative characteristic crack $C = a^*0/G$ indicating the transition from f_t- to K_{IC}- controlled fracture was determined based on the five groups of fracture data on ceramics with different G from 2 to 20 μm reported in the literature and the dominant fracture mechanism of brittle materials. The main conclusions are as follows:

(1) The proposed non-LEFM model combined with normal distribution can be conveniently used either in linear relation to deduce ceramic’s f_t and K_{IC} with a specified reliability from seemingly randomly varied fracture data (σ_N, a) shown in Eq. (2), or in non-linear relation to predict fracture strength σ_N including upper and lower bounds if f_t and K_{IC} ranges are available shown in Eq. (2).

(2) From perspectives of mathematics and physics, the relative characteristic crack $C = a^*0/G = \pi$ independent of the grain size G is determined based on the fracture measurements.

(3) Basic mechanical properties of ceramic, f_t and K_{IC}, have been linked to the microstructure characteristic G and the relative characteristic crack $C = \pi$ shown in Eq. (2), and f_t and K_{IC} are explicitly linked together through the G and $C = \pi$ in Eq. (4).

(4) The upper and lower bounds with 96% reliability for predicting f_t, K_{IC} and σ_N scatters in the present study can provide effective insight to design application, which is beyond the job of the commonly used curve fitting.

Although the quantification is specific to fine-grained ceramics, the proposed non-LEFM model and normal distribution analysed approach can also be applied to other polycrystalline solids such as rock.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (No. 11672048 and 51405029), Shaanxi Province (No. 2017KJXX-11 and 2016JQ5020), and Chang’an University (No. 310825153510).

References

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).