Reviewer 2
Open Review (x) I would not like to sign my review report
() I would like to sign my review report
English language and style () Extensive editing of English language and style required
(x) Moderate English changes required
() English language and style are fine/minor spell check required
() I don't feel qualified to judge about the English language and style
Yes Can be improved Must be improved Not applicable
Does the introduction provide sufficient background and include all relevant references? (x) ()
()
Is the research design appropriate? () (x) () ()
Are the methods adequately described? () () (x) ()
Are the results clearly presented? (x) () () ()
Are the conclusions supported by the results? () (x) () ()
Comments and Suggestions for Authors
Point 1: Understanding the way in which anthropogenic sources of nutrients influence forest ecosystem processes is of current concern. Atmospheric nitrogen downwind of urban areas can significantly alter plant production. Little attention has been given to the fate of understory plants under these conditions and this manuscript seeks to fill this gap in our knowledge. The manuscript is largely well written (but see below) and presents a good interpretation of the results found for eastern China. In some ways, however, the results are routine and do not necessarily pave new intellectual ground. It is, however, a clear description of the impacts of increased nitrogen availability on three understory plants that will be of interest to some.

Response 1: Thank you for your compliments

Comments:

Point 2: The manuscript is cleanly written, however, the Abstract had a number of awkward sentences. I suggest that it be revised for clarity.

Response 2: Done

Point 3: Line 153: What was the homemade device? A dendrometer band?
Response 3: The homemade device was vernier caliper (Guanglu SF 2000, made in China). (line 157-158 in forest-435883 without trace change)

Point 4: Line 154: What was the size of the litter traps?
Response 4: The size of the litter trap was 75 cm × 75 cm.

Results:

Point 5: What was the effect of N addition on soil pH after the experimental treatments? Only the before treatment values are presented. I have experience acidification of soil from N addition.
Response 5: N addition decreased the soil pH after the experiment treatments which were verified in several researches (Dong et al. 2015; Ma et al. 2017).

Point 6: Was any attempt made to directly measure light availability or canopy cover? This would add greatly to the manuscript as the results are largely the interaction of light and N availability.

Response 6: As mentioned in the previous response, in order to draw the conclusion that the growth of understory species might be limited by light availability but not dominated by N (excess or toxicity), we need provide the evidence that light availability was altered by N addition. Unfortunately, it is difficult to directly obtain the light availability since the large variation both in spatial and temporal scales. In this study, we provide two indictors to indirectly show the light availability: girth growth increment at breast height and litterfall productivity. Our results show that the average girth growth rates of overstory trees (Chinese fir) within 4 years after N addition treatment and litterfall productivity in the fifth year significantly increased by 18.28% and 36.71%, respectively (Fig. 1).