Original Comment: Black, Authors Response: Blue, Reviewer response: Red. (Please follow the red)

(1) The literature of the manuscript is very poor and even very important and latest papers on UWB and SWB are missing....Authors are claiming tri notch antenna while there are lot of UWB/SWB antennas having triple and quad notch bands with the same technique....

Response: We agree with this suggestion there many UWB antennas has been designed with multiple notch characteristics but these antennas are unable to operate in the SWB frequency range.

Very few SWB antennas has been designed for SWB application as mentioned in the literature. But antenna either have single or dual notch characteristics or they have large dimension size.

New Comment: As recommended that due to space permitting please introduce further references so that reader may understand the background well. Regarding SWB antenna I believe that the references provided are enough but on band-notched UWB antenna it did not provide any proper insight. I will recommend that please provide quad, and Penta(Quintuple) band-notched antennas in this regard. Also mention that these antennas only operate in the UWB and the presented one operate in SWB as well. Recently, I have seen some structures published in this regard and some of them are for the info. Of authors are: (Sensors 17(10):2174), (Electronics letters 47, 19 (2011): 1062-1063), (Sensors 18(3):911), (AEU, 83 (2018): 470-478). Authors can search in this regard and provide a superiority in terms of results over all of these. This will understand and highlight the novelty in a better way.

(2) The dimensions of reference [27] is 30mm*28mm, while the presented one is 34mm*57mm.... still in comparison table they show that [27] is 0.32lambda*0.34lambda while the presented one is 0.16lambda*0.27lambda..... How is it possible.....similar mistake is done for others as well, which is not fair....

Response: In design of SWB antennas the electrical dimension is based on the lowest cut-off frequency. The mentioned dimension (0.32lambda * 0.34lambda is for ref. [28]. The lowest cut-off frequency in [28] is 3.40 GHz while in our designed antenna it is 1.42 GHz which is much smaller than [28].

New Comment: I agree now but please introduce it in the manuscript. It will help the reader to understand it and calculate that how calculation and comparison is taken out.
(3) Simulation is taken till 90GHz while measurement is up to 50GHz....It means that your antenna is operating till 50GHz.... You cannot claim that my antenna is operating more than 90GHz as you have not validated it by measurements....Moreover show the network analyzer snapshots as well as the measurement looks very noisy.....It means authors have taken data at very limited points..

Response: According to the reviewer’s suggestion we have updated the manuscript to consider the antenna frequency range and performance up to 50 GHz.

New Comment: Thank you for understanding. Now it make sense and looks good all over the manuscript. All plots has been updated accordingly.

(4) Finally, the deigned antenna is not analyzed mathematically and there is no reasoning that how the bandwidth is enhanced. I recommend the authors that please proper analyze your antenna and understand that how such a wideband is achieved.

Response: The procedure to analyze the antenna has been explained in section 2. A numerical simulation approach has been used in order to optimize the antenna bandwidth by taking into account the reduction of the current path followed.

New Comment: I did not see any change in section 2. Please highlight it properly in the next revision. If you think that developing mathematical model is not achievable then you can atleast provide the physical insight of that in a separate paragraph with a detailed discussion. I still feel the same and did not find any insight for that in the revised version.