This manuscript describes a MIP sensor for the detection of cefalexin. A sensor for this antibiotic has been reported, but the earlier device did not involve an imprinted polymer and the authors undertook the research with the expectation that the MIP sensor would be more sensitive. This hypothesis was correct. The manuscript is sound and should be published. I have a few minor scientific questions and a few stylistic comments that are detailed below. I believe that these items are sufficiently minor so that additional review is unwarranted.

We would like to thank the reviewer for recognizing the quality of our study and for the useful suggestions which aim to improve the technical aspect of the work.

Scientific Points

1. Why use two different electrodes? The GCE and BDDE are somewhat redundant. It is only near the end of the manuscript that the authors cite the GCE as preferred because of homogeneity, even though the BDDE was more sensitive. This was predictable and, perhaps, the authors could use that as part of their introduction to avoid readers (such as myself) from asking that question in reading the abstract.

Both the abstract and the introduction were modified according to the reviewer’s suggestion.

2. In the text beginning with Line 322, the AFM measurements of roughness and thickness are relayed. How many measurements were made for each sensor? This is an important point because the MIL films are often not uniform across the film.

Two glassy carbon plates of 1x1 cm were modified in the same way for each type of modification (MIP, NIP, MIP after extraction). Different areas of the glassy carbon plates were analyzed and the images presented are the most representative for each type of modification; the same trend as in the case of the images presented was observed for other analyzed areas, even though, as mentioned by the reviewer, the MIP film was not entirely uniform.

3. The lines in Figure 6 need to be identified in the figure caption. Which is the MIP and which is the NIP?

The figure caption was modified.

4. The inability to reuse the ‘sensor’ technically classifies it as a detector. This is a minor point, but should be acknowledged.

Along the manuscript we used the conception of sensor as defined by IUPAC, which states: “A chemical sensor is a device that transforms chemical information, ranging from the concentration of a specific sample component to total composition analysis, into an analytically useful signal.” [IUPAC - CHEMICAL SENSORS DEFINITIONS AND CLASSIFICATION. Adam Hulanicki, Staniseaw Geab, Folke Ingman. Pure&App/. Chern., Vol. 63, No. 9, pp. 1247-1250, 1991]
5. Line 324 notes that the sensor has low affinity for other than the template. Figure 7 shows that this is definitely not so. It has affinity for related antibiotics as well.

The phrase was re-written for more clarity.

Stylistic Points

1. The language is mostly acceptable, but there are a number of instances in which ‘the’ or ‘a’ is missing. These should be easy to fix.

The entire manuscript was revised and the language level was improved.

2. Line 31 should be ‘in the European’

The manuscript was modified.

3. Line 227 should be ‘(pH = 74) that’

The manuscript was modified.

4. The sentence that begins on Line 228 runs on too long and should be rewritten into several sentences for clarity.

The manuscript was modified.

5. The sentence that begins on Line 344 is awkwardly phrased and should be reconsidered.

The manuscript was modified.

6. Lines 375 to 382 should be a single paragraph not three.

The manuscript was modified.

7. Line 384 should read ‘probes’

The manuscript was modified.

8. The sentence that begins on Line 405 must be rewritten for clarity.

The manuscript was modified.

9. Line 411, ‘resulted’ should be ‘resulting’

The manuscript was modified.

10. Line 446 ‘rebounded’ should be ‘rebound’.

The manuscript was modified.
11. Line 461, ‘assimilated’ should be ‘simulated’
The manuscript was modified.

12. Line 467, ‘note’ should be ‘not’
The manuscript was modified.