Dear Prof.:
Thanks very much for your kind comment and assessment. We have done major revision in light of all of the comments. Here we give the detailed illustrations on the revision in the order they were demanded in the comments:

1. It is not clear what the novelty of this work is. Please improve the introduction with a clearer description of the novelty.
 Answer: The introduction has been improved as highlighted with underline in the fourth and fifth paragraphs of the Introduction “There are many wastewater treatments for textile wastewater reuse, such as constructed wetland [28, 29], activated carbon [30, 31], ion exchange [32, 33]. However, the constructed wetland has poor removal effect on color and the occupation area of it is very large. Activated carbon has a high removal rate on water-soluble dyes, but it cannot adsorb suspended solid (SS) and insoluble dyes. Besides, the activated carbon is difficult to regenerate and thus the operating cost of it is high. Although ion exchange treatment has great removal rate on some specific dissolved pollutants, it is not suitable for the treatment of a large number of multi-component textile wastewater. UF is a good pretreatment process [19]. RO has great effects on the residual color and remaining salt [34]. Ozone is one of the best treatment method in advanced oxidation methods [35], and it is a suitable alternative specially when integrated with biological treatments [10]. However, the industrial application of \(\text{O}_2/\text{UV} \) or \(\text{O}_3/\text{UV}/\text{H}_2\text{O}_2 \) is not recommended because the investment and operating costs are too high [35]. Therefore, in this research, ozonation + UF + RO combination sequence was developed to treat and reuse textile wastewater. The ozonation process mainly aimed to reduce follow-up membrane pollution. Furthermore, specific preprocesses, such as flocculation precipitation, sand filtration, self-cleaning filter, and security filter, were added before ozonation and membrane processing to reduce the operating costs. Besides, the reuse rate of recycled water was subsequently increased through the secondary water reuse system.

 The objective of this research is to find an effective method of treating and reusing wastewater from the textile industry, and analyze its elimination effect and operation cost in different stages with the best operative conditions. Although the ability of ozonation and membrane technologies for the treatment of textile wastewater is well known, most studies focused on synthetic wastewater prepared in laboratories and used laboratory-scale plants over limited periods. Comparing to the existing work, this research used detailed field studies, pollutants monitoring and electricity log processing to investigate the elimination effect and operation cost in different stages. To the best of our knowledge, this is the first time to analyze the operation cost of two-stage ozonation + UF + RO combination sequence with engineering data.”

2. There are multiple unit processes as illustrated in Fig.1. It is not clear the purpose of each unit (tin terms of target pollutant). While the primary sand filters for example achieves over 90% SS removal with about 24 mg/l SS; what is the purpose of a second and a third sand filters? Does this not increase cost unnecessarily? Same argument for a second UF and RO units.
The purpose of each unit has been complemented as highlighted with underline. “The second sand filtration tank mainly aimed to eliminate the suspended matters, which generate in the ozone aeration, and some residues falling from the ozone aeration tank.”, “In order to remove part of the turbidity and CODcr and then protect the follow-up RO system, primary UF system was set.”, “In order to increase the reuse rate of recycled water, a secondary water reuse system, which included secondary ozone aeration tank, third sand filtration tank, secondary UF system and secondary RO system, was set to treat the primary RO concentrated water.”, “The third sand filtration tank mainly aimed to eliminate suspended matters and some residues falling from the tank during ozone aeration to maintain the stability of follow-up procedures.”

The SS removal rate was achieved by the primary sand filtration and secondary sand filtration: “As shown in Fig. 2, the removal rate of SS was the highest (99.34±0.92%), followed by color (74.01±8.68%), CODcr (39.85±7.51%), NH3-N (27.35±31.78%), TP (13.25±15.94%), and TN (-4.39±25.02%) after treatment by the reaction, precipitation, primary sand filtration, ozonation oxidation and secondary sand filtration.”. Besides, as shown in Fig. 2, the sand filtration not only remove the SS, but also the CODcr, TP, turbidity, and TN and so on. So, the second and third sand filters are necessary.

The second UF and RO mainly aimed to reuse the primary RO concentrated water and increase the reuse rate of recycled water.

3. It may be better to report color removal in a more standard unit.

Answer: Dilution ratio method is more suitable for the wastewater with high color, so “times” was used to report the color removal.

4. It is not clear how the cost in Table 6 were estimated. Provide further details or references used.

Answer: The further details for the Table 6 have been provided as “For the primary ozone reaction tank, ~90 g O3.m-3 wastewater was consumed on average, whereas approximately 118 g O3.m-3 wastewater was consumed for the second ozone reaction tank. The electricity consumption of the ozone and oxygen production was 12 kWh.kg-1 O3.power [3]. Thus, an operating cost of approximately 0.11 USD.m-3 wastewater (approximately 8100 USD.d-1 for 7.5×104 m3.d-1 wastewater) was calculated for a power price of 0.1 USD.kWh-1 for the primary zone reaction tank and 0.14 USD.m-3 wastewater (approximately 3505 USD.d-1 for 24750 m3.d-1 wastewater) for the second ozone reaction. Powers of inlet pumps in the primary UF and primary RO system were 340 kW and 2,155 kW, respectively. The total power consumption of primary self-cleaning filter, sand filter, UF, and RO backwash pump was approximately 17 kW. Then, the power consumption of the pumps in the primary water reuse system was 60288 kWh.d-1, and the electricity cost of the pumps in the primary water reuse system was 6029 USD.d-1. The total electricity cost in the primary water reuse system was 14129 USD.d-1. The power consumptions of inlet pumps in the secondary UF and secondary RO system were 110 and 770 kW, respectively. The total power consumption of secondary self-cleaning filter, sand filter, UF, and RO backwash pump was approximately 11 kW. Then, the power consumption of the pumps in the secondary water...
reuse system was 21384 kWh.d⁻¹, and the electricity cost of the pumps in the second water reuse system was 2138 USD.d⁻¹. The total electricity cost in the second water reuse system was 5643 USD.d⁻¹.

The PAC dosage was approximately 80 g.m⁻³ of wastewater and thus the PAC cost was approximately 644 USD.d⁻¹. The number of RO membrane and UF membrane were 5280 and 1224, respectively, and the prices of them were 500 and 2167 USD, respectively. So the costs of UF and RO membranes replacement were 53.04×10^4 and 88×10^4 USD.a⁻¹. The number of workers in the sewage plant were 50, and the annual salary was 25000 USD.person⁻¹. So the employee cost was 125×10^4 USD.a⁻¹. The Machine maintenance cost was approximately 21.91×10^4 USD.a⁻¹. The cost of the agentia and the filter-bag were 11.42×10^4 and 3.96×10^4 USD.a⁻¹, respectively.

The total operating cost of treating textile wastewater is displayed in Table 6, reaching 0.44 USD.m⁻³ reuse water, wherein the cost of the ozone production was 0.18 USD.m⁻³ (40%), that of sand filtration, UF and RO system was 0.19 USD.m⁻³ (43%), and that of machine maintenance, employee cost, agentia, and PAC was 0.08 USD.m⁻³ (17%) (Fig.12). In the filtering system, RO claimed the highest cost (0.14 USD.m⁻³ reuse water), followed by UF (0.04 USD.m⁻³). In RO system, the electricity cost and membrane cost were 0.11 and 0.04 USD.m⁻³, respectively. The operating cost of secondary reuse system was approximately 0.086 USD.m⁻³ higher than that in the primary system, which was caused by the increased ozone dosage and operating pressure of RO. Based on the above analysis, the electricity cost for ozonation and RO treatment accounted for 64.84% of the total cost. Therefore, the key to reducing the operating cost for reuse of recycled water is decreasing the electricity consumption in ozonation and RO. The operating cost of the proposed sequential system in this research was lower than that of FO-RO system in literature [51] by 0.06 USD.m⁻³ reuse water. And it was also much lower than that of electrocoagulation-O₃ process, which was 5.80 USD.m⁻³ treated wastewater [50]."