Comments and Suggestions for Authors
This is an interesting paper these are few things authors can consider addressing

1. The data generated was from one cell line, it will be ideal to show some key results in few cell lines. This will increase robustness of these findings.

Response: Thank for your suggestion. In our research, the experimental data about anti-lung cancer activity of ADC on A549 and HCC827 have been sorted out and written into two articles, one entitled “Increased Inhibition Effect of Antrodin C from Stout the Camphor Medicinal Mushroom, *Taiwanofungus camphoratus* (Agaricomycetes), on A549 through Crosstalk between Apoptosis and Autophagy”, and the other one entitled ”Anti-tumor Effect on HCC827 Lung Adenocarcinoma Cell by Antrodin C from Spent Broth from Submerged Cultures of *Taiwanofungus camphoratus*”. This first one have been accepted by International Journal of Medicinal Mushroom, and will be published on 2019. The other one will be submitted to molecules. Now some data were chosen from these two manuscripts to show the anti-tumor activity on additional lung cancer cell lines including A549 and HCC827.

As shown in Fig.1, the clone formation of A549 cells was significantly inhibited when being treated with 12.5, 50 and 80 μg/mL antrodin C, and the adherence rates of reducing were in a concentration dependent manner. As shown in Fig.2, the results indicated cells migrated more slowly to close the scratched wounds after the treatment of 50 and 80 μg/mL antrodin C for 48 h(*P*<0.01). As shown in Fig.3, antrodin C inhibited the growth of A549 cells in a concentration and time-dependent manner.

As shown in Fig.4, the proliferation of HCC827 cells could be inhibited by ADC treatment in a dose-dependent manner. The inhibition rate of ADC at the concentration of 50 μM on HCC827 was 54.17%, and its IC50 was 324.8 μM. It was found ADC could induce HCC827 cells arrest in S-phase in a dose-dependent manner. As shown in Fig.5, after treatment with gradient concentration of ADC (from 50 to 200 μM), percentage of cell cycle at S phase rised from 14.1% to 33.2%. With the increase of ADC concentration, the early apoptosis rate increased from 4.0% to 9.3%, and the total apoptosis rate increased from 9.3% to 20.8%(Fig.6). Compared with the negative control, the total apoptosis rate increased by 15.1 times(Fig.6).
Fig. 1 Effect of antrodin C on plate clone formation of A549

Fig. 2 Effect of antrodin C on wound-healing of A549
Fig. 3 Inhibition of antrodin C on proliferation of A549

Fig. 4 Inhibition of antrodin C on proliferation of HCC827
Fig. 5 Effect of antrodin C on A549 cell cycle arrest.

Fig. 6 Effect of antrodin C on A549 cell apoptosis.
2. The authors showed Antrodin C increases ROS, it would be interesting to demonstrate addition of antioxidants abrogates the changes seen with Antrodin C. Which will confirm Antrodin C mechanisms of action is regulated by ROS.

Response: Thank for your suggestion. The relevant analysis has been added and marked in red in the revised manuscript. (Figure 7 and Line 189-194, 198-203 and 547-556)