Fenggang Yu et al. focused on the description of mechanisms by which Epstein-Barr virus transforms the nasopharyngeal epithelium. Pseudostratified epithelia (PSE) are widespread and diverse tissue arrangements, and many PSE are organ precursors in a variety of organisms. While cells in PSE, like other epithelial cells, feature apico-basal polarity, they generally are more elongated and their nuclei are more densely packed within the tissue. In addition, nuclei in PSE undergo interkinetic nuclear migration (IKNM, also referred to as INM), whereby all mitotic events occur at the apical surface of the elongated epithelium. The authors, according to my knowledge, for the first time, established a PSE multiple layer model, using epithelial cells derived from nasopharynx specimens to mimic the squamous and respiratory parts of the nasopharyngeal epithelium. Fenggang Yu et al. investigated EBV infection using this model. Their previous study, entitled “Non-malignant epithelial cells preferentially proliferate from nasopharyngeal carcinoma biopsy cultured under conditionally reprogrammed conditions”, published in 2017, was an excellent introduction to the present study. New model, highly similar to the physiological conditions, seems to be useful not only to examine the pathogenesis of pre-neoplastic EBV-infected cells, but also to develop anti-EBV therapy or early stage nasopharyngeal cancer treatment.

Summing up, I believe that the work, due to its novelty, should be published. The methodology has been precisely described and can be repeated in any specialist immunology laboratory. The authors, in their subsequent experiments, should evaluate the impact of EBV and human papilloma virus (HPV) co-infection on PSE.

→ Thank you very much for valuable comments. We also expect our model can be applied to co-infection of EBV and human papilloma virus (HPV) on PSE. It is well worth exploring this novel idea.