Curcumin-loaded solid lipid nanoparticles bypass P-glycoprotein mediated doxorubicin resistance in triple negative breast cancer cells

Gamal-Eldein Fathy Abd-Ellatef 1,2, Elena Gazzano 3, Daniela Chirio 3, Ahmed Ragab Hamed 4, Dimas Carolina Belisario 5, Carlo Zuddas 1, Elena Peira 5, Barbara Rolando 3, Joanna Kopecka 1, Mohamed Assem Said Marie 5, Simona Sapino 3, Sohair Ramadan Fahmy 5, Marina Gallarate 2, Abdel-Hamid Zaki Abdel-Hamid 2, Chiara Riganti 1,*

1 Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy; emails: gabdelra@unito.it; elena.gazzano@unito.it; dimascalinabelisario@unito.it; carlo.zuddas@unito.it; joanna.kopecka@unito.it; chiara.riganti@unito.it
2 Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., 12622, Dokki, Giza, Egypt; emails: gamalology@yahoo.com; gamalology@gmail.com; abdelhamidzaki@hotmail.com
3 Department of Drug Science and Technology, via P. Giuria 9, 10125, Torino, Italy; emails: daniela.chirio@unito.it; elena.peira@unito.it; simona.sapino@unito.it; marina.gallarate@unito.it
4 Chemistry of Medicinal Plants Department, Biology Unit, Central Laboratory of Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., 12622, Dokki, Giza, Egypt; email: n1ragab2004@yahoo.com
5 Zoology Department, Faculty of Science, Cairo University, Gamaa Street, Giza, Egypt; emails: sohairfahmy@gmail.com; massemmarie@yahoo.com

* Correspondence: Chiara.riganti@unito.it; Tel.: +39-011-6705857 (C.R.)
Received: date; Accepted: date; Published: date

Abstract: Multidrug resistance (MDR) is a critical hindrance to the success of cancer chemotherapy. The main responsible for MDR phenotype are plasma-membrane associated ATP Binding Cassette (ABC) drug efflux transporters, such as P-glycoprotein (Pgp) transporter that has a broadest spectrum of substrates. Curcumin (CURC) is a Pgp inhibitor, but it is poorly soluble and bioavailable. To overcome these limitations, we validated the efficacy and safety of CURC loaded in biocompatible solid lipid nanoparticles (SLNs), with or without chitosan coating, with the goal to increase stability, homogeneous water dispersibility and cellular uptake. Both CURC-loaded SLNs were 5-to-10 fold more effective than free CURC in increasing intracellular retention and toxicity of doxorubicin in Pgp-expressing triple negative breast cancer (TNBC). The effect was due to the decrease of intracellular reactive oxygen species, consequent inhibition of the Akt/IKKα-β/NF-κB axis, reduced transcriptional activation of Pgp promoter by p65/p50 NF-κB. CURC-loaded SLNs also effectively rescued the sensitivity to doxorubicin against drug-resistant TNBC tumors, without signs of systemic toxicity. These results suggest that the combination therapy based on CURC-loaded SLNs and doxorubicin is an effective and safe approach to overcome the Pgp-mediated chemoresistance in TNBC.

Keywords: Solid lipid nanoparticles; curcumin; P-glycoprotein; doxorubicin resistance; triple negative breast cancer
1. Introduction

Multidrug resistance (MDR), i.e. a cross-resistance to a broad variety of anticancer drugs unrelated for structure and activity, produces chemotherapy failure and tumor progression [1]. One of the most studied mechanisms of MDR is the overexpression of drug efflux pumps belonging to the ATP Binding Cassette (ABC) transporters family, characterized by a broad and overlapping spectrum of substrates [2-3]. The main ABC transporters clinically associated with the development of MDR are P-glycoprotein (Pgp/ABCB1), MDR Related Proteins (MRPs/ABCCs) and Breast Cancer Resistance Protein (BCRP/ABCG2) [4-5].

Triple negative breast cancer (TNBC) is an aggressive and invasive subtype of breast cancer that accounts for 10–20% of all breast cancers [6]. Chemotherapy based on anthracyclines, such as doxorubicin, and taxanes is the main treatment option for patients with TNBC. After neoadjuvant chemotherapy, about 30 to 40% patients achieve a complete response with no histological evidence of disease at the time of surgery [7]. However, the onset of drug resistance due to the presence of Pgp reduces the efficacy of neoadjuvant and adjuvant chemotherapy in many cases [8-9]. Improving the success rate of anthracycline-based chemotherapy in TNBC is still an unmet need.

The latest frontiers in Pgp inhibition is the co-administration of antineoplastic agents with pump’s inhibitors [10-11]. The co-encapsulation within liposomes or biocompatible nanoparticles have been experimented to improve pharmacokinetic and pharmacodynamic features of Pgp inhibitors [12].

Curcumin (CURC) is a secondary metabolite isolated from the turmeric of Curcuma longa, which has several biological activities, including inhibiting Pgp activity and expression [13-14]. Since CURC is a highly lipophilic drug, different CURC-loaded nano-formulations were developed, in order to enhance its solubility, stability, specificity, tolerability, cellular uptake/internalization, efficacy and therapeutic index [15-16]. Solid lipid nanoparticles (SLNs) are interesting nanocarriers to be exploited CURC delivery. Biocompatibility, low particle size (below 1000 nm), chemical and mechanical stability, easy functionalization, enhanced delivery of bioactive lipophilic molecules, represent the most advantageous properties of SLN [17-19]. The solid lipid matrix protects entrapped lipophilic drugs from chemical degradation and enhances their physical stability. SLN ameliorate the half-life of drugs in the systemic circulation, modulate their release kinetics, and increase the therapeutic efficacy of drugs used in anticancer therapy [20-21]. Moreover, SLNs surface can be decorated by several agents. Among the coating materials, chitosan (CS) is a non-toxic, biocompatible and biodegradable polymer, and has been proven to control the release of drugs. Its fair solubility in aqueous media avoids the use of organic solvents during SLNs preparation, and, once added to the synthesized SLNs, it does not require further SLNs purification [22]. Owing to its hydrophilic character, amphiphilic CS derivatives are commonly used with lipid matrix like that of SLNs [23].

The aim of this work is to test and mechanistically investigate the properties of two different formulations of CURC-loaded SLNs (with and without chitosan) as examples of biocompatible nanomaterials, able to improve CURC delivery to TNBC cells, enhance its property of inhibiting Pgp and reverse doxorubicin resistance.

2. Materials and Methods

Chemicals and materials. Trilaurin (TL), ethyl acetate (EA), benzyl alcohol (BenzOH), butyl lactate (BL), sodium taurocholate (NaTC), Pluronic® F68, 1,2 propanediol, CURC, cholesterol,
chitosan and Sepharose® CL 4B, doxorubicin were purchased from Sigma Chemicals Co. (St. Louis, MO). Epikuron®200 (lecithin-phosphatidylcholine 92%) was was from Cargill (Minneapolis, MN, USA), Cremophor®RH 60 (PEG-60 hydrogenated castor oil) from BASF (Ludwigshafen, Germany). The plastic ware for cell cultures was obtained from Falcon (Becton Dickinson, Franklin Lakes, NJ). The electrophoresis reagents were from Bio-Rad Laboratories (Hercules, CA). The protein content of cell lysates was assessed with the BCA kit from Sigma Chemicals Co. Deionized water was obtained by a MilliQ system (Millipore, MO, USA). Unless specified otherwise, all reagents were purchased from Sigma Chemicals Co.

SLN preparation and characterization. SLNs were prepared by the “cold dilution of microemulsion” method. This technique involves the preparation of an oil/water (O/W) microemulsion (µE) using a partially water-soluble organic solvent, in which the proper lipid matrix is dissolved, as disperse oil phase. Following water dilution of the µE, the solubilization of the organic solvent in water occurs, with the consequent SLNs precipitation. Briefly, two different solutions of a) trilaurin in EA; b) cholesterol/CS in BL were used as lipid phases, while Epikuron®200, NaTC and Cremophor®RH60 were employed as surfactant/cosurfactant. EA/BL and water were mutually pre-saturated before use. The resulting µE were then diluted by 2% w/w Pluronic® F68 aqueous solution to precipitate SLN. Stearoyl-chitosan (CS) was synthetized according to the method described in a previous work [23]. Two different CURC-loaded SLNs were prepared with or without CS - CURC-CS-SLN and CURC-SLN respectively - following the method described in previous works [23-24]. The main difference between the two formulations concerns SLN surface characteristics, i.e. the surface of CURC-SLN is lipophilic, the surface of CURC-CS-SLN is hydrophilic, because the lipophilic chains of CS fit inside the SLN lipid matrix, whilst -OH groups are exposed outward, conferring hydrophilic character to the nanoparticle surface. SLN were characterized by dimensional analysis, drug entrapment and overtime stability: both SLNs types had mean diameter lower than 200 nm, CURC entrapment efficiency was in the 70-75% range of the total CURC amount, stability over the time as reported [24].

Cell lines. Human MCF-7 cells, human TNBC MDA-MB-231 and murine mammary cancer JC cells (syngeneic with balb/C mice) were purchased from ATCC® (Manassas, VA). Cells were maintained in RPMI-1640 media supplemented with 10% v/v fetal bovine serum (FBS), 1% v/v penicillin-streptomycin, 1% v/v L-glutamine.

Doxorubicin accumulation. 5 × 10⁶ cells were incubated as reported in the Results section, washed twice with PBS, gently scraped and centrifuged at 13,000 × g for 5 min at 4 °C. The amount of intracellular doxorubicin was detected fluorimetrically using a HT Synergy 96-well micro-plate reader (Bio-Tek Instruments, Winooski, VT), using excitation and emission wavelengths of 475 and 553 nm, respectively [25]. Fluorescence was converted in nmoles doxorubicin/mg cell proteins using a calibration curve.

Cytotoxicity. The release of lactate dehydrogenase (LDH) in the extracellular medium, considered an index of doxorubicin cytotoxicity [25], was measured spectrophotometrically [26]. 50 µl of the culture medium were centrifuged at 12,000 × g for 15 min, and diluted in 0.2 ml of 82.3 mM triethanolamine phosphate hydrochloride (TRAP, pH 7.6). LDH activity was measured in 200 µL of medium, by adding 5 mM NADH and 20 mM pyruvic acid, measuring the change in absorbance at 340 nm with a HT Synergy 96-well micro-plate reader, for 6 min. The reaction kinetics was linear. The results were expressed as µmoles NAD+/min/mg cell proteins.
Rhodamine 123 efflux. Rhodamine 123 accumulation, which is inversely related to its efflux, was used as a second index of Pgp activity [27]. The intracellular rhodamine 123 content was detected fluorimetrically, using a HT Synergy 96-well micro-plate reader. The results were expressed as nmoles/mg cell proteins.

Immunoblotting. Cells were rinsed with ice-cold lysis buffer (50 mM Tris, 10 mM EDTA, 1% v/v Triton-X100), supplemented with the protease inhibitor cocktail set III (80 μM aprotinin, 5 mM bestatin, 1.5 mM leupeptin, 1 mM pepstatin; Calbiochem, San Diego, CA), 2 mM phenylmethylsulfonyl fluoride and 1 mM NaVO₄ then sonicated and centrifuged at 13,000 x g for 10 min at 4 °C. 20 μg protein extracts were subjected to SDS-PAGE and probed with antibodies for: anti-Pgp/ABCB1 (Calbiochem), anti-MRP1/ABCC1 (Abcam, Cambridge, UK), anti-BCRP/ABCG2 (Santa Cruz Biotechnology Inc., Santa Cruz, CA), anti-(phosphoSer473)Akt (Cell Signalling Technology, Danvers, MA), anti-Akt (Cell Signalling Technology), anti-(phosphoSer176/180)IKKα/β (Cell Signalling Technology), anti-IKKα/β (Cell Signalling Technology), anti-IkBα (Santa Cruz Biotechnology Inc.), followed by a peroxidase-conjugated secondary antibody (Bio-Rad Laboratories). The membranes were washed with Tris-buffered saline-Tween 0.1% v/v solution, and the proteins were detected by enhanced chemiluminescence (Bio-Rad Laboratories). To check the equal control loading in lysates, samples were probed with an anti-β-tubulin (Santa Cruz Biotechnology Inc.) antibody.

Flow cytometry. Cells were harvested, washed twice in PBS, detached with cell dissociation solution (Sigma Chemical Co.) and re-suspended in culture medium containing 5% v/v FBS. Samples were washed with 0.25% w/v PBS-bovine serum albumin (BSA), incubated with the primary antibody for an anti-ABCB1/Pgp antibody (clone C219, Abcam) for 45 min at 4 °C. After washing with PBS-BSA 1% w/v, cells were incubated with a secondary fluorescein isothiocyanate (FITC)-conjugated antibody (Sigma Chemical Co.) for 30 min at 4 °C. After washing twice with PBS-BSA 1% w/v and fixing in paraformaldehyde 2% w/v for 5 min at room temperature, samples were analyzed by a Guava® easyCyte flow cytometer (Millipore), using the InCyte software (Millipore). Control experiments included incubation of cells with non-immune isotypic antibody, followed by the secondary antibody.

Quantitative Real Time-PCR (qRT-PCR). Total RNA was extracted by phenol/chloroform method. 1 μg RNA was reverse-transcribed using the iScript Reverse Transcription Supermix kit (Bio-Rad Laboratories), according to the manufacturer's instruction. 25 ng cDNA were amplified with 10 μl IQ™ SYBR Green Supermix (Bio-Rad Laboratories). Primers were designed with the q Primer Depot software (http://primerdepot.nci.nih.gov/): Pgp/ABCB1: 5’-TGCTGGAGCGTTCTTACG-3’,5’-ATAGGCAATGTTCACAAATG-3’; MRP1/ABCC1: 5’-CATTCAGCTCCTTTCCTCTG-3’; 5’-GGATTAGGGGTCGATTGGT-3’; BCRP/ABCG2: 5’-GTTCACCCGCTGGAAC-3’; 5’-CTGCCTTGGTCCAT-3’; S14: 5’-CGAGGCTGATGACCTGTTCT-3’, 5’-GCCCTCTCCACTCTCTTCT-3’. qRT-PCR was carried out with an iQ™5 cycler (Bio-Rad Laboratories). Cycling conditions were: 1 cycle of 30 s at 95 °C, 40 cycles of denaturation (15 s at 95 °C), annealing/extension (30 s at 60 °C). The same cDNA preparation was used to quantify the genes of interest and the housekeeping gene S14, used to normalize gene expression. The relative quantitation of each sample was performed using the Gene Expression Quantitation software (Bio-Rad Laboratories). Results were expressed in arbitrary units. For each gene, the expression in untreated cells was considered 1.
Reactive oxygen species (ROS) measurement. 1 x 10^6 cells were re-suspended in 0.5 ml PBS, incubated for 30 min at 37 °C with 5 μM of the fluorescent probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydro-fluorescein diacetate-acetoxyethyl ester (DCFDA-AM), centrifuged at 13,000 x g at 37 °C for 5 min and re-suspended in 0.5 ml PBS. The fluorescence of each sample, considered an index of ROS levels, was read at 492 nm (λ excitation) and 517 nm (λ emission), using a HT Synergy 96-well micro-plate reader. The results were expressed as nmoles/mg cell proteins.

Nuclear Factor-kB (NF-kB) and Hypoxia Inducible Factor-1α (HIF-1α) activity. Nuclei were isolated with the Nuclear Extraction kit (Active Motif, Rixensart, Belgium), as per manufacturer’s instructions. NF-kB activity was measured on 10 μg of nuclear proteins with the TransAM Flexi NF-kB activation kit (Active Motif), using the whole mix of antibodies provided by the kit (p50, p65, Rel-A, c-Rel, p52), to measure to global NF-kB activity, or each antibody separately, to measure the activation of specific NF-kB components. HIF-1α activity was measured using the HIF Activation Kit (Active Motif), as per manufacturer’s instructions. The absorbance at 450 nm was measured with a Packard EL340 microplate reader (Bio-Tek Instruments). Results were expressed as mU/mg nuclear proteins.

Chromatin immunoprecipitation (ChIP). Chromatin immunoprecipitation (ChIP) experiments were performed using the Magna ChIP A/G Chromatin Immunoprecipitation kit (Millipore) as per manufacturer’s instructions. Samples were immunoprecipitated with 5 μg of ChIP-grade anti-p50 (Abcam) or anti-p65 (Abcam) antibodies, or with no antibody, as a blank. The immunoprecipitated DNA was then washed twice with 100 μl of elution buffer (0.1 M NaHCO3, 0.1% v/v sodium dodecyl sulfate), the crosslinking was reversed by incubating the samples at 65 °C for 6 h, then samples were incubated with proteinase K (Sigma Chemicals Co.) for 1 h at 55 °C. The DNA was eluted using the GenElute Mammalian Genomic DNA Miniprep kit (Sigma Chemicals Co.) and analyzed by qRT-PCR, as detailed above. The primer sequences of the promoter of mdr1 gene, which encodes for Pgp/ABCB1, designed with Primer3 software (http://frodo.wi.mit.edu/primer3), were: 5'-CGATCCGCCTAAGAACAAAG-3'; 5'-AGGCACAATTGAAGGAAGGAG-3'. The following primers were used to amplify the sequence of mdr1 promoter from 20 ng of non-immuno-precipitated genomic DNA: 5'-GACCCAAGCTCTCCATGTGAGCGAG-3'; 5'-AGGGAAGGTCTGCGAGCTGTA-3'. The results were expressed as ratio between the expression in immuno-precipitated samples and the expression in genomic samples. The relative expression of this ratio in untreated samples was considered as 1. As negative internal controls, immuno-precipitated samples were subjected to qRT-PCR with the following primers matching 10,000 bp upstream the promoter: 5'-GTGCTGCCTGAGGAAGGAGA-3'; 5'-GCAAAGTGGCACAAGCA-3'. In this condition, no qRT-PCR product was detected (data not shown).

In vivo tumor growths and hematochemical parameters. 1×10^7 JC cells were mixed with 100 μl Matrigel and orthotopically implanted in 6 week-old female immunocompetent balb/C mice (Charles River Laboratories Italia, Calco), housed (5 per cage) under 12 h light/dark cycle, with food and drinking provided ad libitum. Tumor growth was measured daily by caliper, according to the equation (LxW^2)/2, where L=tumor length and W=tumor width. When tumor reached the volume of 50 mm³, mice (n=8/group) were randomized and treated on day 1, 7 and 14 after randomization as it follows: 1) vehicle group, treated with 200 μl saline solution intravenously (i.v.); 2) CURC group (cur), treated with 5 mg/kg CURC, dissolved in 200 μl water/10% v/v DMSO solution i.v.; 3) doxorubicin group (dox), treated with 5 mg/kg doxorubicin, dissolved in 200 μl water i.v.; 4) CURC + doxorubicin...
group, treated with 100 µl of water/10% v/v DMSO solution containing with 5 mg/kg CURC + 100 µl water solution containing 5 mg/kg doxorubicin; 5) CURC-CS-SLN group, treated i.v. with 200 µl of saline solution of the indicated SLNs containing 5 mg/kg CURC; 6) CURC-CS-SLN + doxorubicin group, treated i.v. with 100 µl of saline solution of the indicated SLNs containing 5 mg/kg CURC + 100 µl water solution containing 5 mg/kg doxorubicin; 7) CURC-SLN group, treated i.v. with 200 µl of saline solution of the indicated SLNs containing 5 mg/kg CURC; 8) CURC-SLN + doxorubicin group, treated i.v with 200 µl of saline solution of the indicated SLNs containing 5 mg/kg CURC + 100 µl water solution containing 5 mg/kg doxorubicin. Tumor volumes were monitored daily. Animals were euthanized at day 21 after randomization with zolazepam (0.2 ml/kg) and xylazine (16 mg/kg).

LDH, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), creatinine, creatine phosphokinase (CPK) and CPK-MB, cardiac troponin I (cTnI) and T (cTnT) were measured on blood samples collected immediately after euthanasia, using commercially available kits from Beckman Coulter Inc. (Beckman Coulter, Miami, FL). The animal care and experimental procedures were approved by the Bio-Ethical Committee of the Italian Ministry of Health (#122/2015-PR).

Statistical analysis. All data in the text and figures are provided as means ± SD. The results were analysed by a one-way analysis of variance (ANOVA) and Tukey’s test, using GraphPad Prism (v 6.01) software and Statistical Package for Social Science (SPSS) software (IBM SPSS Statistics v.19). p < 0.05 was considered significant.

3. Results

3.1. CURC-loaded SLNs are more effective than free CURC in increasing doxorubicin efficacy in resistant triple negative breast cancer cells

In this work human TNBC MDA-MB-231 cells and murine JC cells were used. Both cell lines were characterized by high levels of Pgp compared to MCF7 cells, used a doxorubicin-sensitive cell line [28] with undetectable levels of Pgp. MDA-MB-231 cells also had low levels of MRP1 and BCRP, that were undetectable in JC cells (Figure S1).

As shown in Figure 1a-b, free CURC increased doxorubicin retention and doxorubicin-induced cell damage at 25-50 μM. However, at these concentration, CURC was cytotoxic also without doxorubicin. In order to reduce the concentration of CURC below this toxicity threshold and maintain its ability to increase doxorubicin accumulation, we tested CURC-SLN and CURC-CS-SLN. Indeed, we hypothesized that SLNs may allow a higher delivery of CURC within the cells, enhancing the chemo sensitizing effects towards free CURC. Preliminary experiments showed that blank SLNs, i.e. SLNs without CURC, did not increase the release of LDH after 24 h in MDA-MB-231 cells if the nanocarriers were diluted 1:100 in the culture medium (data not shown). This dilution, which corresponded to a final concentration of 5 μM CURC, was used in all the subsequent experiments. Both CURC-SLN and CURC-CS-SLN increased doxorubicin accumulation (Figure 1c) and doxorubicin-induced release of LDH, without being cytotoxic in the absence of doxorubicin (Figure 1d). Similar effects on doxorubicin accumulation and cytotoxicity were obtained on the highly Pgp-expressing JC cells (Figure 1e-f).
Figure 1. Dose-dependent effects of free CURC and CURC-loaded SLNs on doxorubicin accumulation and cytotoxicity in MDA-MB-231 and JC cells

MDA-MB-231 (panels a-d) and JC (panels e-f) cells were incubated 24 h with fresh medium (ctrl) or with the 5-25-50 μM CURC (cur), in the absence (-) or presence (+) of 5 μM doxorubicin (dox). (a) Intracellular doxorubicin was measured fluorimetrically in duplicates. Data are presented as means ± SD (n = 3). ° p<0.01: vs dox. (b) The release of LDH in the extracellular medium was measured spectrophotometrically in duplicates. Data are presented as means ± SD (n = 3). * p<0.05: vs untreated cells (ctrl); ° p<0.05 vs dox-treated cells. (c-d) MDA-MB-231 cells were incubated 24 h with fresh medium (ctrl), 5 μM CURC (cur), blank SLN (bl SLN), CURC-loaded SLN (cur SLN, containing 5 μM cur), with or without chitosan. When indicated, 5 μM doxorubicin (dox) was added. (c) Intracellular
doxorubicin was measured fluorimetrically in duplicates. Data are presented as means ± SD (n = 3). ° p< 0.001: vs dox; # p < 0.001 vs cur. (d) The release of LDH in the extracellular medium was measured spectrophotometrically in duplicates. Data are presented as means ± SD (n = 3). * p< 0.001: vs ctrl; ° p< 0.001: vs dox; # p < 0.001 vs cur. (e-f) JC cells were incubated as reported in panels C-D. (e) Intracellular doxorubicin was measured fluorimetrically in duplicates. Data are presented as means ± SD (n = 3). ° p< 0.001: vs dox; # p < 0.001 vs cur. (f) The release of LDH in the extracellular medium was measured spectrophotometrically in duplicates. Data are presented as means ± SD (n = 3). * p< 0.001: vs ctrl; ° p< 0.001: vs dox; # p < 0.001 vs cur.

3.2 CURC-loaded SLNs decrease Pgp activity and expression

To clarify whether the effects of SLNs were due to changes in Pgp expression or activity, we first measured whether CURC released from SLNs may act as inhibitor of Pgp efflux activity, evaluating the retention of rhodamine 123, another typical Pgp substrate, in MDA-MB-231 cells. In long-term assays - i.e. after a 24 h incubation of free CURC or CURC-loaded nanoformulations, followed by a 20 min incubation with rhodamine 123 - we observed an increased intracellular retention of rhodamine 123 in cells treated with CURC-SLN and CURC-CS-SLN (Figure 2a). These results suggest a diminished efflux of the dye via Pgp. By contrast, in short-term assays (i.e. CURC and CURC-loaded SLNs co-incubated with rhodamine 123 for 20 min) we did not detect any changes in rhodamine 123 content (Figure S2). This experimental set suggests that it is unlikely that SLNs loaded with CURC act as competitive inhibitors of Pgp.

We hypothesize that the increase in doxorubicin and rhodamine 123 retention was due to changes in Pgp expression. To investigate this issue, we first measured the amount of Pgp on cell surface, corresponding to the active form of the protein. As shown in Figure 2b-c, CURC-SLN and CURC-CS-SLN slightly decreased the amount of surface Pgp in MDA-MB-231-Pgp cells. Doxorubicin increased Pgp, as a consequence of mdr1 gene up-regulation in response to the drug [29]. This increase was not reversed by free CURC or blank SLNs, but only by CURC-loaded SLNs. The changes in the surface Pgp proteins were paralleled by changes in the mRNA of Pgp: while in the absence of doxorubicin we did not detect any significant changes in Pgp mRNA, doxorubicin treatment hugely increased it. CURC-SLN and CURC-CS-SLN, but not free CURC or blank SLNs, reduced such increase (Figure 2d). By contrast, neither doxorubicin nor the other treatments changed the mRNA levels of MRP1/ABCC1 (Figure S3a) and BCRP/ABCG2 (Figure S3b), suggesting that effect of SLNs carrying CURC was specific for Pgp transcription.
Figure 2. Effects of CURC-loaded SLNs on Pgp activity and expression

MDA-MB-231 cells were incubated 24 h with fresh medium (ctrl), with 5 μM CURC (cur), blank SLN (bl SLN), CURC-loaded SLN (cur SLN, containing 5 μM cur), with or without chitosan. When indicated, 5 μM doxorubicin (dox) was added. (a) The Pgp substrate rhodamine 123 was added in the last 20 minutes. The intracellular accumulation of rhodamine 123 was measured fluorimetrically in duplicates. Data are presented as means ± SD (n = 3). * p< 0.001: vs ctrl; # p < 0.001 vs cur. (b) Pgp on cell surface was measured by flow cytometry, results were expressed as mean fluorescence intensity (MFI). Measurements were performed in triplicates. Data are presented as means ± SD (n = 3). * p< 0.01: vs ctrl; ° p< 0.001: vs dox; # p < 0.001 vs cur. (c) Representative histograms of one out of three experiments. (d) The expression of the Pgp mRNA was measured by qRT-PCR in triplicates. Data are presented as means ± SD (n = 3). * p< 0.01: vs ctrl; ° p< 0.001: vs dox; # p < 0.001 vs cur.
3.3. CURC-loaded SLNs decrease Pgp transcription by reducing intracellular ROS and NF-kB activity

We next investigated the potential mechanisms of CURC-loaded SLNs in reducing Pgp transcription after doxorubicin exposure. Doxorubicin is known to increase ROS in treated cells [30-31], while CURC has been reported to prevent such increase [32]. We thus investigated how ROS levels changed in MDA-MB-231 cells exposed to doxorubicin and CURC. As expected, doxorubicin increased intracellular ROS. Free CURC did not prevent such increase, whereas CURC-loaded SLN, either with or without CS, significantly reduced ROS (Figure 3a).

Intracellular ROS can mediate the activation of several transcription factors. Among these redox-sensitive factors, HIF-1α [29, 33] and NF-kB [34-35] are well known transcriptional inducers of mdr1 gene. In MDA-MB-231 cells, HIF-1α activity was increased by doxorubicin, as already reported for other cell types [29], but not free CURC neither CURC-loaded SLNs affected its activity in doxorubicin-treated and untreated cells (Figure S4). In keeping with the increased ROS levels, doxorubicin-treated cells displayed a higher activation of NF-kB that was not reduced by free CURC and blank SLN. NF-kB activity was instead blunted in doxorubicin-treated cells by CURC-SLN and CURC-CS-SLN (Figure 3b), in keeping with their reduction in ROS levels (Figure 3a).

We hypothesized that the effects of SLNs carrying CURC on the reduced transcription of Pgp was due to a decreased activity of NF-kB. NF-kB is a multimeric transcription factor, whose components (e.g. p50, p65, p52, Rel-A, c-Rel) form heterodimers characterized by different transcriptional effects [36-37]. Specifically, p65 has been described to bind mdr1 promoter and activate the transcription of Pgp [35]. p50/p65 dimer is sequestered in cytoplasm in an inactive form by the inhibitor-kB-α (IkB-α). However, the phosphorylation of IkB-α on serine 32 primes the latter for ubiquitination and proteasomal degradation, freeing p50/p65 dimer to translocate in the nucleus and become an active transcription factor [38]. The master regulator of IkB-α phosphorylation is the IkB-α kinase α/β (IKKα/β) complex that is in turn activated after being phosphorylated on serine 176 and 180 [39]. Among the multiple kinases activating IKK α/β, there is Akt, upon its phosphorylation on serine 473 [40]. ROS are known activators of Akt and downstream IKKα/β/NF-kB axis [41] that is often constitutively activated in cancer cells [40-41].

We next investigated which NF-kB components were eventually targeted by CURC-loaded SLNs. Doxorubicin increased p50 (Figure 3c), p65 (Figure 3d) and - at lesser extent - c-Rel (Figure S5) binding to target DNA sequences. In accord with previous evidences [35], p50, p65 and c-Rel binding activity was reduced by CURC-SLN and CURC-CS-SLN (Figure 3c-d; Figure S5). Of note, CURC-loaded SLNs reduced the basal activity of p50 and p65 also in the absence of doxorubicin, suggesting a particularly strong and specific effects of CURC in inhibiting this dimer. To confirm that the nuclear translocation and binding of p50/p65 to DNA was also responsible of the transcription of Pgp, we immunoprecipitated p50 and p65 bound to DNA and amplified the immunoprecipitated DNA with primers specific for mdr1 promoter. This ChIP assay indicated that doxorubicin increases the transcription of mdr1 gene mediated by p50 (Figure 3e) and p65 (Figure 3f). CURC-SLN and CURC-CS-SLN, but non free CURC, decreased p50- and p65-induced transcription of the gene, both in the absence or in the presence of doxorubicin (Figure 3E-F), confirming the results of DNA binding of p50 and p65 (Figure 3c-d).
The expression and activity of upstream activators - Akt, IKKα/β - and inhibitor - IκB-α - of p50/p65 dimer was measured by immunoblotting. While doxorubicin increased phospho(Ser473)Akt and phospho(Ser176/180)IKKα/β, CURC-loaded SLNs, with or without CS, decreased these phosphorylations, contrarily to free CURC or blank SLN that were devoid of effects. Consistently, doxorubicin decreased the total amount of IκB-α. This decrease was restored by CURC-SLN and CURC-CS-SLN, not by free CURC or blank SLN. Of note both CURC-loaded SLNs reduced phospho(Ser473)Akt, phospho(Ser176/180)IKKα/β and IκB-α in doxorubicin-treated cells to the same levels detected in untreated cells. Neither free CURC nor SLNs affected the expression of total Akt or IKKα/β. Moreover, no changes were detected in cells not treated with doxorubicin (Figure 3g).

Figure 3

![Graphs showing intracellular ROS, NF-κB activity, p50/p65 binding, p65 binding, and Western blot images of p(Ser473)Akt, Akt, p(Ser176/180)IKKα/β, IκB-α, and tubulin expression with and without doxorubicin treatment and CURC or blank SLN administration.](image-url)
Figure 3. Effects of CURC-loaded SLNs on intracellular ROS, NF-kB activation and NF-kB-mediated Pgp transcription

MDA-MB-231 cells were incubated with fresh medium (ctrl), 5 μM CURC (cur), CURC-loaded SLN (cur SLN, containing 5 μM cur), with or without chitosan. When indicated, 5 μM doxorubicin (dox) was added. (a) ROS levels were measured fluorimetrically in triplicates. Data are presented as means ± SD (n = 3). * p< 0.05: vs ctrl; ° p< 0.001: vs dox; # p < 0.01 vs cur. (b) NF-kB activation was measured by ELISA in duplicates. Data are presented as means ± SD (n = 3). * p< 0.05: vs ctrl; ° p< 0.001: vs dox; # p < 0.01 vs cur. (c-d) The binding activity of p50 and p65 was measured by ELISA in duplicates. Data are presented as means ± SD (n = 3). * p< 0.001: vs ctrl; ° p< 0.02: vs dox; # p < 0.01 vs cur. (e-f) The binding of p50 or p65 to mdr1 promoter was measured by ChIP. The immunoprecipitated DNA was amplified by qRT-PCR in triplicates and quantified. Data are presented as means ± SD (n = 3). * p< 0.01: vs ctrl; ° p< 0.001: vs dox; # p < 0.01 vs cur. (g) Cells were lysed and probed with the indicated antibodies. Tubulin was used as control of equal protein loading. The figure is representative of one out or three experiments with similar results.

3.4 CURC-loaded SLNs are effective and safe in preclinical models of Pgp-expressing mammary JC tumors

We finally evaluated the efficacy of CURC-SLN and CURC-CS-SLN, alone or in combination with doxorubicin, in mice bearing doxorubicin-resistant/Pgp-expressing JC tumors. While free CURC did not reduce tumor growth (Figure 4a, upper panel) and mass (Figure 4b), both CURC-loaded SLNs decreased the rates of growth (Figure 4A, upper panel). Doxorubicin, alone and in combination with free CURC, was completely ineffective (Figure 4a, lower panel; Figure 4b), in line with the high resistance of these cells detected in vitro (Figure 1e-f). By contrast, the combinations of CURC-loaded SLN, with or without CS, plus doxorubicin were the most effective in reducing tumor growth (Figure 4a, lower panel) and mass (Figure 4b). These combinations were significantly more effective than doxorubicin, CURC and CURC-loaded SLNs without doxorubicin (Figure 4a-b).

Figure 4

Figure 4. Effects of CURC-loaded SLNs against drug-resistant JC tumors
JC cells were orthotopically implanted into 6 week-old female balb/C mice. When tumor reached the volume of 50 mm³, mice (n= 8 mice/group) were randomized and treated as reported in the following groups, on day 1, 7 and 14 after randomization: 1) vehicle group (ctrl), treated with 200 µl saline solution intravenously (i.v.); 2) CURC group (cur), treated with 5 mg/kg CURC, dissolved in 200 µl water/10% v/v DMSO solution i.v.; 3) doxorubicin group (dox), treated with 5 mg/kg doxorubicin, dissolved in 200 µl water i.v.; 4) CURC + doxorubicin group (cur+dox), treated with 100 µl of water/10% v/v DMSO solution containing 5 mg/kg doxorubicin; 5) CURC-CS-SLN group, treated i.v. with 200 µl of saline solution of the indicated SLNs containing 5 mg/kg CURC; 6) CURC-SLN group, treated i.v. with 100 µl of saline solution of the indicated SLNs containing 5 mg/kg CURC + 100 µl water solution containing 5 mg/kg doxorubicin; 7) CURC-SLN group, treated i.v. with 100 µL of saline solution of the indicated SLNs containing 5 mg/kg CURC + 100 µl water solution containing 5 mg/kg doxorubicin. (a) Tumor growth was monitored daily by caliper measurement. Data are presented as means±SD. *p<0.01: vs. ctrl; *p<0.001: vs. dox; #p<0.001: vs. cur.

(b) Photographs of representative tumors of each group.

Furthermore, we measured the hematochemical parameters in the treated animals at the time of sacrifice, to check if there were signs of systemic toxicities. LDH, AST, ALT and AP were considered as indexes of liver toxicity parameters, creatinine as parameter of kidney, CPK, CPK-MB, cTnI and cTnT as parameters of heart toxicity. None treatments affected liver- and kidney-related parameters. As expected, doxorubicin-treated animals had increased CPK, CPK-MB and cTnT, i.e. typical parameters of heart damage [42]. Neither free CURC nor the CURC-loaded SLNs alter the hematochemical parameters versus the untreated animals. Importantly, they did not worsen the parameters indicative of cardiotoxicity when administered with doxorubicin compared with doxorubicin-treated animals (Table 1).

Table 1. Hematochemical parameters of the treated mice

<table>
<thead>
<tr>
<th></th>
<th>ctrl</th>
<th>CURC</th>
<th>CURC-CS-SLN</th>
<th>CURC-SLN</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDH (U/l)</td>
<td>7091 ± 639</td>
<td>7189 ± 409</td>
<td>6781 ± 1021</td>
<td>7112 ± 678</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>89 ± 54</td>
<td>101 ± 43</td>
<td>121 ± 48</td>
<td>99 ± 29</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>38 ± 8</td>
<td>41 ± 8</td>
<td>37 ± 10</td>
<td>34 ± 8</td>
</tr>
<tr>
<td>AP (U/l)</td>
<td>134 ± 49</td>
<td>139 ± 41</td>
<td>129 ± 29</td>
<td>139 ± 18</td>
</tr>
<tr>
<td>Creatinine (mg/l)</td>
<td>0.056 ± 0.005</td>
<td>0.062 ± 0.010</td>
<td>0.062 ± 0.009</td>
<td>0.054 ± 0.008</td>
</tr>
<tr>
<td>CPK (U/l)</td>
<td>314 ± 99</td>
<td>312 ± 83</td>
<td>382 ± 56</td>
<td>334 ± 39</td>
</tr>
</tbody>
</table>
Pharmaceutics 2019, 11, x FOR PEER REVIEW 14 of 21

<table>
<thead>
<tr>
<th></th>
<th>CPK-MB (ng/ml)</th>
<th>cTnI (pg/ml)</th>
<th>cTnT (pg/ml)</th>
<th>+ doxorubicin</th>
<th>ctrl</th>
<th>CURC</th>
<th>CURC-CS-SLN</th>
<th>CURC-SLN</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDH (U/l)</td>
<td>7561 ± 761</td>
<td>7192 ± 506</td>
<td>7821 ± 821</td>
<td>6523 ± 801</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>103 ± 44</td>
<td>132 ± 45</td>
<td>105 ± 36</td>
<td>137 ± 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>36 ± 15</td>
<td>41 ± 18</td>
<td>39 ± 13</td>
<td>56 ± 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP (U/l)</td>
<td>138 ± 25</td>
<td>167 ± 56</td>
<td>139 ± 44</td>
<td>168 ± 41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine (mg/l)</td>
<td>0.083 ± 0.009</td>
<td>0.082 ± 0.009</td>
<td>0.093 ± 0.011</td>
<td>0.093 ± 0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPK (U/l)</td>
<td>556 ± 89 *</td>
<td>571 ± 89 *</td>
<td>562 ± 81 *</td>
<td>504 ± 81 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPK-MB (ng/ml)</td>
<td>0.302 ± 0.71</td>
<td>0.287 ± 0.045</td>
<td>0.297 ± 0.062</td>
<td>0.322 ± 0.016 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTnI (pg/ml)</td>
<td>1.021 ± 0.039</td>
<td>1.033 ± 0.046</td>
<td>1.031 ± 0.067</td>
<td>1.019 ± 0.052</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| cTnT (pg/ml) | 3.197 ± 0.209 | 2.882 ± 0.172 | 2.904 ± 0.209 | 2.821 ± 0.178 *

1 Balb/C mice (n=8 mice/group) were treated as described in Figure 4. Blood was collected immediately after euthanasia and analyzed for lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), creatinine, creatine phosphokinase (CPK) and CPK-MB, cardiac troponin I (cTnI) and T (cTnT). Data are presented as means±SD. * p < 0.05: vs ctrl group.

In all the assays in vitro and in vivo we did not notice any significant difference between the SLNs with or without CS.

4. Discussion

Turmeric or natural curcumoids have been reported to have antioxidant [43], anti-inflammatory [44] and antimicrobial activities [45]. CURC has recently shown anti-tumor properties, relying on the inhibition of oncogenic/pro-survival STAT-3 and NF-κB-dependent pathways, of pro-invasive factor Sp-1, of tumor-associated inflammation [46-47]. Interestingly, these effects are accompanied by a low toxicity against non-transformed cells [48], suggesting a sort of selectivity against tumor cells.
The main disadvantages of CURC are the poor water-solubility, the unfavorable pharmacokinetic profile and the easy degradation at slightly alkaline pH, that limit CURC efficacy in clinical practice. To increase the bioavailability of CURC, the use of nanocarriers that may decrease CURC degradation and increase its uptake within tumor cells was proposed [49] (Sun et al., 2013). SLN are nanocarriers with high biocompatibility, ideal for the delivery of highly hydrophobic drugs. The recently developed “cold dilution of microemulsion” SLN preparation method [23-24] does not require high temperatures, sonication, use of organic solvents, pH variations that could negatively influence drug stability or entrapment. Resulting SLNs have small mean diameters ranging from 175 to 190 nm, low polydispersity index (< 0.2), a high and reproducible drug entrapment efficiency. Such SLNs were also produced by introducing CS in the microemulsion system, that confers hydrophilic properties to SLN surface in order to mask or camouflage SLN from the mononuclear phagocytic system (MPS) after parenteral administration. Indeed, it is well known that lipophilic nanoparticles can be quickly opsonized, allowing macrophages of MPS to easily recognize and remove them before they can perform their designed therapeutic function. Moreover, CS is highly biodegradable and biocompatible material, and has strong adhesive properties to epithelial cells, that should favor the cellular uptake of coated SLNs.

In line with the hypothesis that the entrapment of CURC within SLNs improves its cellular effects, the results of our preliminary comparison of free CURC, CURC-SLN and CURC-CS-SLN indicated that SLN formulations produced the same retention of doxorubicin and doxorubicin-induced toxicity at a concentration (i.e. 5 µM) about 5 to 10 fold lower than free CURC. Moreover, at this concentration, neither blank SLNs nor CURC-SLN and CURC-CS-SLN were cytotoxic for the cells. To achieve the same chemosensitizing efficacy, free CURC had to be used at 25-50 µM, a range of concentrations that elicits cytotoxicity in vitro and is difficult to reach in vivo. These results indirectly suggested that SLNs elicited a higher delivery of CURC within the cells, allowing to exert the chemosensitizing effects at a concentration at which free CURC was ineffective and suggesting had superior efficacy of CURC-loaded SLNs over free CURC.

Mechanistically, CURC delivered by SLN did not act as a competitive inhibitor of Pgp, since it did not increase the retention of rhodamine 123, a classical Pgp substrate, if co-incubated with the dye at short term. By contrast, a 24 h pre-incubation of CURC-SLN and CURC-CS-SLN increased the accumulation of both doxorubicin and rhodamine 123. This event was paralleled by the decrease in Pgp mRNA and protein, and was evident in cells treated with doxorubicin. The stronger effects on doxorubicin-treated cells may be explained by the fact that doxorubicin up-regulates Pgp at transcriptional level [29]. Therein, any inhibitory effect is more evident in cells with an active transcription of the gene. These results look promising because they suggest that CURC-loaded SLNs reduced Pgp expression only in cancer cells after exposure to chemotherapy, without affecting the basal expression of the transporter. This means that the physiological activities of Pgp in non-transformed tissues are likely less affected than the activity of Pgp within tumor cells, leading to expect lower undesired side-toxicities. Moreover, no changes in MRP1 and BCRP mRNA levels were detected, suggesting that the effects of CURC-loaded SLNs were specific for Pgp. Such specificity for Pgp may further contribute to limit the undesired toxicity due to the non-selective inhibition of other ABC transporters.

Unexpectedly, intracellular doxorubicin accumulation and cytotoxicity, levels of Pgp mRNA and proteins were comparable between CURC-SLN and CURC-CS-SLN. CURC-CS-SLN are known
for their higher hydrophilic properties. It is likely that the good solubility in cell culture medium
achieved by CURC-SLN is sufficient to reach the maximal CURC delivery necessary to induce
chemosensitizing effects. On the other hand, our data suggest that CS coating likely did not change
significantly the amount of released CURC within the cells.

To further investigate the mechanisms at the basis of the down-regulation of the doxorubicin-
induced Pgp transcription, we focused on three interconnected events elicited by doxorubicin in
cancer cells and involved in Pgp up-regulation: the increase in intracellular ROS, the activation of the
transcription factors HIF-1α and NF-κB. Notably, HIF-1α and NF-κB are both Pgp inducers [29, 33,
34, 50] and are activated in response to the increased intracellular ROS [51-52], while CURC is known
to prevent oxidative stress [43]. Our data indicated that doxorubicin increased ROS levels, HIF-1α
and NF-κB activity, as expected; CURC-SLN and CURC-CS-SLN reduced ROS and NF-κB activation,
without any effects on HIF-1α. We identify p50, p65 and – at lesser extent – c-Rel as the NF-κB
components inhibited by CURC. Our results are in accord to previous findings, demonstrating that
p65, which commonly dimerizes with p50 [37], is the main NF-κB component binding mdr1 promoter
and activating the transcription of Pgp [35]. By reducing both p65 and p56 binding to mdr1 promoter,
CURC delivered by SLNs strongly reduced the levels of Pgp mRNA. Our studies on the signalling
upstream NF-κB suggest that the effects of CURC were due to the decreased activation of Akt and
IKK-α/β complex upon doxorubicin treatment, consequent to the reduced expression of IkB-α that
allowed the nuclear translocation and transcriptional activity of p65/p50 dimer. Since ROS activate
the Akt/IKK-α/β/NF-κB axis [40-41], we hypothesized that the primum movens of Pgp reduction was
the decrease in intracellular ROS induced by CURC and the consequent down-regulation of Akt/IKK-
α/β/NF-κB/Pgp pathway. This may explain why the effects of CURC-SLN and CURC-CS-SLN were
more pronounced in cells treated with doxorubicin, where there are high levels of intracellular ROS,
and less pronounced in untreated cells, where ROS levels were significantly lower.

The effects of CURC-SLN and CURC-CS-SLN were not cell line- or species-specific, since
they were shared by both human and murine doxorubicin-resistant cells, suggesting that SLNs
achieves their chemosensitizing effects in different mammalian species.

It has been already reported that CURC down-regulates Pgp expression by reducing Akt/NF-
κB activation [2]. Indeed, free CURC synergizes with paclitaxel, a typical Pgp substrate, in different
cancer cell lines [53], enforcing the idea that the chemosensitizing effect of CURC was mediated by a
reduction in Pgp transcription. Our approach, however, offers an advancement in this direction,
because the use of SLNs allows to reverse doxorubicin resistance in highly-Pgp expressing cells with
low and non-toxic doses of CURC, indicating that the choice of proper biocompatible materials can
increase the ratio between anti-tumor benefits/cytotoxicity.

Our in vivo experiments support this hypothesis. Indeed, consistently with the anti-tumor
properties of CURC [48], SLN formulations alone reduced the growth of doxorubicin-resistant JC
tumors at a dosage at which free CURC was ineffective. These results suggest a better bioavailability
and delivery to tumor of CURC when carried by SLNs than when administered as free drug. Most
importantly, the effects of CURC-SLN and CURC-CS-SLN were most pronounced in doxorubicin-
treated animals, where the anthracycline alone was ineffective but its efficacy was rescued by the
combination with SLNs. This is consistent with the mechanism of increased intracellular
accumulation of doxorubicin, due to the down-regulation of Pgp, observed in vitro. Furthermore,
both SLN formulations did not display signs of systemic toxicities and did not worsen the cardiac
damage, indicated by the increase in CPK, CPK-MB and cTnT, induced by doxorubicin. We are aware that, to further ascertain the safety of our formulations, an in depth analysis of the target organs - liver, kidney, heart, lung, bone marrow, central nervous system - checking the lack of toxicities beyond hematochemical parameters is highly desirable. A detailed distribution and pharmacokinetic profile of the CURC-loaded SLN formulations is necessary as well, to optimize the scheduled treatments and the route of administration, in order to further increase anti-tumor benefits and safety. These studies are currently ongoing in our group.

As already observed for in vitro assays, there were no differences between CURC-SLN and CURC-CS-SLN, although CS should grant a higher stability and biocompatibility of the nanocarriers. It is likely that CURC-SLN had a good pharmacokinetic profile and suitable characteristics to elicit anti-tumor property, and a good biocompatibility that avoids side-toxicities. Future in vivo studies might be useful to investigate the role of CS to reduce SLN opsonization and prolong their plasma half-life.

5. Conclusions

Overall, this is the first study validating biocompatible nanocarriers loaded with CURC as new tools able to down-regulate Pgp expression and rescue doxorubicin efficacy against resistant TNBC tumors, at lower and non-toxic doses of CURC. These results are particularly relevant because all Pgp inhibitors developed in the recent years repeatedly failed for the poor specificity and the high toxicity, due to the inhibition of physiological functions of Pgp in non-transformed tissues [54]. SLNs appear to be biocompatible, effective and safe. Our results are clinically relevant because chemotherapy based on doxorubicin is one of the first therapeutic options in TNBC. Unluckily, this type of breast cancer results less responsive to doxorubicin than other breast cancer types [55], because of the abundant presence of Pgp [56]. Increasing doxorubicin efficacy in TNBC is still an unmet need, but biocompatible SLNs loaded with CURC may help to achieve this goal.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1:

- Figure S1: Expression of Pgp, MRP1 and BCRP in the cell lines analyzed
- Figure S2: Effects of CURC-loaded SLNs co-incubated with rhodamine 123 on the dye retention
- Figure S3: Effects of CURC-loaded SLNs on MRP1 and BCRP expression
- Figure S4: Effect of CURC-loaded SLNs on HIF-1α activation
- Figure S5: Effect of CURC-loaded SLNs on c-Rel activation

Funding: The research leading to these results has received funding from AIRC under IG 2018 - ID. 21408 project – P.I. Riganti Chiara. Gamal Eldein Fathy Abd-Elatef was recipient of a joint PhD supervision mission from the Academy of Scientific Research and Technology in Egypt. This article is based upon work from COST Action 17104 STRATAGEM, supported by COST (European Cooperation in Science and Technology).

Acknowledgments: We are grateful to Mr. Costanzo Costamagna, Department of Oncology, for technical assistance.
Conflicts of Interest: The authors declare no conflict of interest.
References

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).